1 |
WANG S , LI H L , NIU S K . Empirical research on climate warming risks for forest fires: a case study of grade Ⅰ forest fire danger zone, Sichuan Province, China. Sustainability, 2021, 13 (14): 7773.
|
2 |
THIRUMAL P C, SHYLU DAFNI AGNUS L. Forest fire detection and prediction-survey[C]//Proceedings of International Conference on Inventive Computation Technologies. Washington D. C., USA: IEEE Press, 2022: 1295-1302.
|
3 |
李宾. 面向森林火灾的烟雾检测系统的设计与开发[D]. 青岛: 山东科技大学, 2018.
|
|
LI B. Design and development of smoke detection system for forest fire[D]. Qingdao: Shandong University of Science and Technology, 2018. (in Chinese)
|
4 |
ALLISON R S , JOHNSTON J M , CRAIG G , et al. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors-Basel, 2016, 16 (8): e1310.
|
5 |
BOUGUETTAYA A , ZARZOUR H , TABERKIT A M , et al. A review on early wildfire detection from unmanned aerial vehicles using deep learning-based computer vision algorithms. Signal Processing, 2022, 190, 108309.
|
6 |
张丹丹, 章光, 陈西江, 等. 改进YCbCr和区域生长的多特征融合的火焰精准识别算法. 激光与光电子学进展, 2020, 57 (6): 061022.
|
|
ZHANG D D , ZHANG G , CHEN X J , et al. Flame identification algorithm based on improved multi-feature fusion of YCbCr and region growth. Laser & Optoelectronics Progress, 2020, 57 (6): 061022.
|
7 |
YUAN C , LIU Z X , ZHANG Y M . Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. Journal of Intelligent & Robotic Systems, 2017, 88 (2): 635- 654.
|
8 |
ZOU Z X , CHEN K Y , SHI Z W , et al. Object detection in 20 years: a survey. Proceedings of the IEEE, 2023, 111 (3): 257- 276.
|
9 |
王国平, 严云洋, 高尚兵, 等. 基于Fire-YOLO的火焰检测算法. 信息与电脑, 2022, 34 (5): 49- 52.
|
|
WANG G P , YAN Y Y , GAO S B , et al. Flame detection algorithm based on fire-YOLO. China Computer & Communication, 2022, 34 (5): 49- 52.
|
10 |
唐丹妮. 面向森林火灾检测的深度学习方法研究[D]. 西安: 西安理工大学, 2021.
|
|
TANG D N. Research on deep learning method for forest fire detection[D]. Xi'an: Xi'an University of Technology, 2021. (in Chinese)
|
11 |
ZHAO L , ZHI L Q , ZHAO C , et al. Fire-YOLO: a small target object detection method for fire inspection. Sustainability, 2022, 14 (9): 4930.
|
12 |
SUN B Y , WANG Y , WU S Y . An efficient lightweight CNN model for real-time fire smoke detection. Journal of Real-Time Image Processing, 2023, 20 (4): 74.
|
13 |
ZHOU M D , LIU S , LI J J . Multi-scale forest flame detection based on improved and Optimized YOLOv5. Fire Technology, 2023, 59 (6): 3689- 3708.
|
14 |
CHEN Y X , WANG T , LIN H F . Research on forest flame detection algorithm based on a lightweight neural network. Forests, 2023, 14 (12): 2377.
|
15 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 779-788.
|
16 |
TERVEN J , CÓRDOVA-ESPARZA D M , ROMERO-GONZÁLEZ J A . A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction, 2023, 5 (4): 1680- 1716.
|
17 |
ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[EB/OL]. [2024-02-01]. https://arxiv.org/abs/2304.03198.
|
18 |
WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module. Berlin, Germany: Springer, 2018.
|
19 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
20 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
21 |
|
22 |
DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7373-7382.
|
23 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 764-773.
|
24 |
ZHENG Z , WANG P , REN D , et al. Enhancing geometric factors in model learning and inference for objec t detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52 (8): 8574- 8586.
|
25 |
|
26 |
SHAMSOSHOARA A , AFGHAH F , RAZI A , et al. Aerial imagery pile burn detection using deep learning: the FLAME dataset. Computer Networks, 2021, 193, 108001.
|