作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 91-100. doi: 10.19678/j.issn.1000-3428.0069347

• 人工智能与模式识别 • 上一篇    下一篇

动态异构图增强的级联解码事件抽取

郭新宇1,2,3, 马博1,2,3, 艾比布拉·阿塔伍拉1,2,3, 杨奉毅1,2,3, 周喜1,2,3,*()   

  1. 1. 中国科学院新疆理化技术研究所,新疆 乌鲁木齐 830011
    2. 中国科学院大学,北京 100049
    3. 新疆民族语音语言信息处理实验室,新疆 乌鲁木齐 830011
  • 收稿日期:2024-02-02 修回日期:2024-05-16 出版日期:2025-09-15 发布日期:2025-09-26
  • 通讯作者: 周喜

Event Extraction via Cascade Decoding Enhanced by Dynamic Heterogeneous Graphs

GUO Xinyu1,2,3, MA Bo1,2,3, Aibibula Atawula1,2,3, YANG Fengyi1,2,3, ZHOU Xi1,2,3,*()   

  1. 1. Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, Xinjiang, China
  • Received:2024-02-02 Revised:2024-05-16 Online:2025-09-15 Published:2025-09-26
  • Contact: ZHOU Xi

摘要:

事件抽取是一项重要的信息抽取任务,旨在从自然语言文本中抽取出特定的事件或事实信息。在现实事件抽取场景中存在大量的事件重叠问题,即一个单词可以同时作为不同事件类型的触发词或不同角色的事件论元。然而,现有重叠事件抽取方法忽略了事件类型、论元角色等事件元素之间的关联和依赖关系,导致重叠事件抽取性能不佳。针对此问题,提出一种动态异构图增强的级联解码事件抽取模型DHG-EE,通过多粒度级联解码结构与领域-事件类型-论元角色异构图网络,有效实现重叠事件的结构表示与事件元素间的信息传递。具体来说:首先采用预训练模型对自然语言文本进行编码并构建由领域、事件类型和论元角色组成的多粒度异构图网络,将重叠事件论元与对应的多个领域节点和事件类型节点分开,并通过异构图的动态点边结构高效表示重叠事件的复杂关联关系;然后多粒度级联解码结构按照语义粒度由粗到细依次解码领域属性、事件类型、事件触发词和事件论元,并将上一粒度信息作为额外信息辅助下一粒度的解码,通过粗粒度领域和事件类型的预解码,有效约束了细粒度重叠触发词和事件论元的解码。实验结果表明,该模型在FewFC和DuEE1.0基准事件抽取数据集上的F1值优于对比的基线模型。

关键词: 信息抽取, 事件抽取, 重叠事件, 异构图网络, 级联解码

Abstract:

Event extraction is an important information extraction task that aims to extract specific events or information from natural language texts. There are many overlapping event problems, where one word is used as a trigger for different event types or when event arguments for different roles in real-life event extraction scenarios. However, existing overlapping event extraction methods ignore the correlations and dependencies between event elements, such as event types and argument roles, resulting in a poor performance of overlapping event extraction. To solve this problem, this paper proposes an event extraction model via cascade decoding enhanced by dynamic heterogeneous graphs, named DHG-EE, which can effectively realize the structural representation of overlapping events and facilitates information transmission between event elements through a multi-granularity cascade decoding structure and a domain-event type-argument role heterogeneous graph network. First, the pre-trained model encodes the natural language text and constructs a multi-granularity heterogeneous graph network composed of domains, event types, and argument roles, which separates the overlapping event arguments from the corresponding multiple domain nodes and event-type nodes and efficiently represents the complex associations of overlapping events through the dynamic point-edge structure of the heterogeneous graph. Then, the multi-granularity cascading decoding structure decodes domain attributes, event types, event trigger words, and event arguments, in order from coarse to fine, according to semantic granularity and uses the information of the previous granularity as additional information to assist in the decoding of the next granularity. Experimental results show that the F1 value of the proposed model is better than that of the baseline models on the FewFC and DuEE1.0 benchmark event extraction datasets.

Key words: information extraction, event extraction, overlapping event, heterogeneous graph network, cascade decoding