| 1 |
BOUKABARA S A , EYRE J , ANTHES R A , et al. The earth-observing satellite constellation: a review from a meteorological perspective of a complex, interconnected global system with extensive applications. IEEE Geoscience and Remote Sensing Magazine, 2021, 9 (3): 26- 42.
doi: 10.1109/MGRS.2021.3070248
|
| 2 |
|
| 3 |
ZHANG R Q , ZHU D L . Study of land cover classification based on knowledge rules using high-resolution remote sensing images. Expert Systems with Applications, 2011, 38 (4): 3647- 3652.
doi: 10.1016/j.eswa.2010.09.019
|
| 4 |
CHERIYADAT A M . Unsupervised feature learning for aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (1): 439- 451.
doi: 10.1109/TGRS.2013.2241444
|
| 5 |
DU L , LING H B . Dynamic scene classification using redundant spatial scenelets. IEEE Transactions on Cybernetics, 2016, 46 (9): 2156- 2165.
doi: 10.1109/TCYB.2015.2466692
|
| 6 |
CHENG G , HAN J W , LU X Q . Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE, 2017, 105 (10): 1865- 1883.
doi: 10.1109/JPROC.2017.2675998
|
| 7 |
HAN J W , ZHANG D W , CHENG G , et al. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (6): 3325- 3337.
doi: 10.1109/TGRS.2014.2374218
|
| 8 |
WU X , LI W , HONG D F , et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: a survey. IEEE Geoscience and Remote Sensing Magazine, 2022, 10 (1): 91- 124.
doi: 10.1109/MGRS.2021.3115137
|
| 9 |
GHORBANZADEH O , TIEDE D , WENDT L , et al. Transferable instance segmentation of dwellings in a refugee camp-integrating CNN and OBIA. European Journal of Remote Sensing, 2021, 54 (1): 127- 140.
|
| 10 |
ZHANG L P , ZHANG L F , DU B . Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 2016, 4 (2): 22- 40.
doi: 10.1109/MGRS.2016.2540798
|
| 11 |
WU G M , GUO Y M , SONG X Y , et al. A stacked fully convolutional networks with feature alignment framework for multi-label land-cover segmentation. Remote Sensing, 2019, 11 (9): 1051.
doi: 10.3390/rs11091051
|
| 12 |
MOHAMMADIMANESH F , SALEHI B , MAHDIANPARI M , et al. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 223- 236.
doi: 10.1016/j.isprsjprs.2019.03.015
|
| 13 |
GHAMISI P , RASTI B , YOKOYA N , et al. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 2019, 7 (1): 6- 39.
doi: 10.1109/MGRS.2018.2890023
|
| 14 |
刘金香, 班伟, 陈宇, 等. 融合多维度CNN的高光谱遥感图像分类算法. 中国激光学报, 2021, 48 (16): 1610003.
|
|
LIU J X , BAN W , CHEN Y , et al. Hyperspectral remote sensing image classification algorithm incorporating multi-dimensional CNN. Chinese Journal of Lasers, 2021, 48 (16): 1610003.
|
| 15 |
徐从安, 吕亚飞, 张筱晗, 等. 基于双重注意力机制的遥感图像场景分类特征表示方法. 电子与信息学报, 2021, 43 (3): 683- 691.
|
|
XU C A , LV Y F , ZHANG X H , et al. A feature representation method for remote sensing image scene classification based on dual attention mechanism. Journal of Electronics and Information, 2021, 43 (3): 683- 691.
|
| 16 |
于野, 艾华, 贺小军, 等. A-FPN算法及其在遥感图像船舶检测中的应用. 遥感学报, 2021, 24 (2): 107- 115.
|
|
YU Y , AI H , HE X J , et al. A-FPN algorithm and its application to ship detection in remote sensing images. Journal of Remote Sensing, 2021, 24 (2): 107- 115.
|
| 17 |
齐嘉豪, 张宇, 万鹏程, 等. 红外遥感图像目标识别对抗算法研究. 航空兵器, 2022, 29 (3): 1- 7.
|
|
QI J H , ZHANG Y , WAN P C , et al. Research on target recognition adversarial algorithm for infrared remote sensing images. Air Armament, 2022, 29 (3): 1- 7.
|
| 18 |
|
| 19 |
CZAJA W, FENDLEY N, PEKALA M, et al. Adversarial examples in remote sensing[C]//Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, USA: ACM Press, 2018: 408-411.
|
| 20 |
|
| 21 |
XU Y H , DU B , ZHANG L P . Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: attacks and defenses. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (2): 1604- 1617.
doi: 10.1109/TGRS.2020.2999962
|
| 22 |
CHEN L , XU Z W , LI Q , et al. An empirical study of adversarial examples on remote sensing image scene classification. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (9): 7419- 7433.
doi: 10.1109/TGRS.2021.3051641
|
| 23 |
XU Y H , DU B , ZHANG L P . Self-attention context network: addressing the threat of adversarial attacks for hyperspectral image classification. IEEE Transactions on Image Processing, 2021, 30, 8671- 8685.
doi: 10.1109/TIP.2021.3118977
|
| 24 |
XU Y H , GHAMISI P . Universal adversarial examples in remote sensing: methodology and benchmark. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 15.
|
| 25 |
|
| 26 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 618-626.
|
| 27 |
BRENDEL W, RAUBER J, BETHGE M. Decision-based adversarial attacks: reliable attacks against black-box machine learning models[EB/OL]. [2024-02-05]. https://arxiv.org/abs/1712.04248.
|
| 28 |
CHEN P Y, ZHANG H, SHARMA Y, et al. ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. New York, USA: ACM Press, 2017: 15-26.
|
| 29 |
CHEN J B, JORDAN M I, WAINWRIGHT M J. HopSkipJumpAttack: a query-efficient decision-based attack[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D.C., USA: IEEE Press, 2020: 1277-1294.
|
| 30 |
PAPERNOT N, MCDANIEL P, GOODFELLOW I. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples[EB/OL]. [2024-02-05]. https://arxiv.org/abs/1605.07277.
|
| 31 |
PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[C]//Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. New York, USA: ACM Press, 2017: 506-519.
|
| 32 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 9185-9193.
|
| 33 |
XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 2725-2734.
|
| 34 |
|
| 35 |
WU W B, SU Y X, LYU M R, et al. Improving the transferability of adversarial samples with adversarial transformations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 9020-9029.
|
| 36 |
|
| 37 |
INKAWHICH N, WEN W, LI H H, et al. Feature space perturbations yield more transferable adversarial examples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 7059-7067.
|
| 38 |
WU W B, SU Y X, CHEN X X, et al. Boosting the transferability of adversarial samples via attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 1158-1167.
|
| 39 |
WANG Z B, GUO H C, ZHANG Z F, et al. Feature importance-aware transferable adversarial attacks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 7619-7628.
|
| 40 |
GAO L L , HUANG Z J , SONG J K , et al. Push & pull: transferable adversarial examples with attentive attack. IEEE Transactions on Multimedia, 2022, 24, 2329- 2338.
doi: 10.1109/TMM.2021.3079723
|
| 41 |
KIM W J, HONG S, YOON S E. Diverse generative adversarial perturbations on attention space for transferable adversarial attacks[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/2208.05650.
|
| 42 |
LUO C, LIN Q L, XIE W C, et al. Frequency-driven imperceptible adversarial attack on semantic similarity[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 15294-15303.
|
| 43 |
|
| 44 |
ZHANG Q, LI X, CHEN Y, et al. Beyond ImageNet attack: towards crafting adversarial examples for black-box domains[EB/OL]. [2024-02-05]. https://arxiv.org/abs/2201.11528.
|
| 45 |
HECKBERT P . Color image quantization for frame buffer display. ACM SIGGRAPH Computer Graphics, 1982, 16 (3): 297- 307.
doi: 10.1145/965145.801294
|
| 46 |
ORCHARD M T , BOUMAN C A . Color quantization of images. IEEE Transactions on Signal Processing, 1991, 39 (12): 2677- 2690.
doi: 10.1109/78.107417
|
| 47 |
WALLACE G K . The JPEG still picture compression standard. Communications of the ACM, 1991, 34 (4): 30- 44.
doi: 10.1145/103085.103089
|
| 48 |
HINTON G E . Learning multiple layers of representation. Trends in Cognitive Sciences, 2007, 11 (10): 428- 434.
doi: 10.1016/j.tics.2007.09.004
|
| 49 |
RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2014: 512-519.
|
| 50 |
|
| 51 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 52 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2261-2269.
|
| 53 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 2818-2826.
|
| 54 |
YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. Washington D.C., USA: IEEE Press, 2010: 270-279.
|
| 55 |
XIA G S , HU J W , HU F , et al. AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (7): 3965- 3981.
doi: 10.1109/TGRS.2017.2685945
|
| 56 |
|
| 57 |
DAI D X , YANG W . Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (1): 173- 176.
doi: 10.1109/LGRS.2010.2055033
|
| 58 |
|
| 59 |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 10425-10433.
|
| 60 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
| 61 |
|
| 62 |
|
| 63 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2017: 39-57.
|
| 64 |
|
| 65 |
SCHWINN L , RAAB R , NGUYEN A , et al. Exploring misclassifications of robust neural networks to enhance adversarial attacks. Applied Intelligence, 2023, 53 (17): 19843- 19859.
doi: 10.1007/s10489-023-04532-5
|
| 66 |
|
| 67 |
|