| 1 |
SADAK F , SAADAT M , HAJIYAVAND A M . Real-time deep learning-based image recognition for applications in automated positioning and injection of biological cells. Computers in Biology and Medicine, 2020, 125, 103976.
doi: 10.1016/j.compbiomed.2020.103976
|
| 2 |
|
| 3 |
|
| 4 |
刘梦庭, 凌捷. 优化梯度增强黑盒对抗攻击算法. 计算机工程与应用, 2023, 59 (18): 260- 267.
|
|
LIU M T , LING J . Optimized gradient boosting black-box adversarialattack algorithm. Computer Engineering and Applications, 2023, 59 (18): 260- 267.
|
| 5 |
郑德生, 陈继鑫, 周静, 等. 基于输入通道拆分的对抗攻击迁移性增强算法. 计算机工程, 2023, 49 (1): 130- 137.
doi: 10.19678/j.issn.1000-3428.0064362
|
|
ZHENG D S , CHEN J X , ZHOU J , et al. Adversarial attack transferability enhancement algorithm based on input channel splitting. Computer Engineering, 2023, 49 (1): 130- 137.
doi: 10.19678/j.issn.1000-3428.0064362
|
| 6 |
|
| 7 |
李哲铭, 王晋东, 侯建中, 等. 基于显著区域优化的对抗样本攻击方法. 计算机工程, 2023, 49 (9): 246-255, 264.
doi: 10.19678/j.issn.1000-3428.0065814
|
|
LI Z M , WANG J D , HOU J Z , et al. Adversarial example attack method based on salient region optimization. Computer Engineering, 2023, 49 (9): 246-255, 264.
doi: 10.19678/j.issn.1000-3428.0065814
|
| 8 |
|
| 9 |
DONG Y P, PANG T Y, SU H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE Press, 2019: 4307-4316.
|
| 10 |
ZHANG Q L, LI X D, CHEN Y F, et al. Beyond ImageNet attack: towards crafting adversarial examples for black-box domains[EB/OL]. [2024-05-02]. https://arxiv.org/abs/2201.11528v4.
|
| 11 |
赫晓慧, 宋定君, 李盼乐, 等. 融合多尺度特征的遥感影像道路提取方法. 计算机工程, 2022, 48 (8): 196- 205.
doi: 10.19678/j.issn.1000-3428.0062451
|
|
HE X H , SONG D J , LI P L , et al. Remote sensing image road extraction method combined with multiscale features. Computer Engineering, 2022, 48 (8): 196- 205.
doi: 10.19678/j.issn.1000-3428.0062451
|
| 12 |
|
| 13 |
XIONG Y F, LIN J D, ZHANG M, et al. Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 14963-14972.
|
| 14 |
|
| 15 |
PANG T, XU K, DU C, et al. Improving adversarial robustness via promoting ensemble diversity[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 4970-4979.
|
| 16 |
赖妍菱, 石峻峰, 陈继鑫, 等. 基于U-Net的对抗样本防御模型. 计算机工程, 2021, 47 (12): 163- 170.
doi: 10.19678/j.issn.1000-3428.0060571
|
|
LAI Y L , SHI J F , CHEN J X , et al. Adversarial example defense model based on U-Net. Computer Engineering, 2021, 47 (12): 163- 170.
doi: 10.19678/j.issn.1000-3428.0060571
|
| 17 |
ZHAO Z , LIU Z , LARSON M . On success and simplicity: a second look at transferable targeted attacks. Advances in Neural Information Processing Systems, 2021, 34, 6115- 6128.
|
| 18 |
BYUN J, CHO S, KWON M J, et al. Improving the transferability of targeted adversarial examples through object-based diverse input[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE Press, 2022: 15223-15232.
|
| 19 |
SPRINGER J , MITCHELL M , KENYON G . A little robustness goes a long way: leveraging robust features for targeted transfer attacks. Advances in Neural Information Processing Systems, 2021, 34, 9759- 9773.
|
| 20 |
ZOU J, PAN Z, QIU J, et al. Improving the transferability of adversarial examples with resized-diverse-inputs, diversity-ensemble and region fitting[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2020: 563-579.
|
| 21 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 9185-9193.
|
| 22 |
WANG X S, HE K. Enhancing the transferability of adversarial attacks through variance tuning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 1924-1933.
|
| 23 |
WANG X S, HE X R, WANG J D, et al. Admix: enhancing the transferability of adversarial attacks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, Canada: IEEE Press, 2021: 16138-16147.
|
| 24 |
BYUN J, KWON M J, CHO S, et al. Introducing competition to boost the transferability of targeted adversarial examples through clean feature mixup[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 24648-24657.
|