| 1 |
ZOU Z X , SHI Z W . Ship detection in spaceborne optical image with SVD networks. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5832- 5845.
doi: 10.1109/TGRS.2016.2572736
|
| 2 |
REN Z D , TANG Y Q , HE Z W , et al. Ship detection in high-resolution optical remote sensing images aided by saliency information. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 16.
|
| 3 |
ZHANG W C , ZHANG R , WANG G Q , et al. Physics guided remote sensing image synthesis network for ship detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 515- 513.
|
| 4 |
林封笑, 陈华杰, 姚勤炜, 等. 基于混合结构卷积神经网络的目标快速检测算法. 计算机工程, 2018, 44 (12): 222- 227.
doi: 10.19678/j.issn.1000-3428.0049051
|
|
LIN F X , CHEN H J , YAO Q W , et al. A fast target detection algorithm based on hybrid structured convolutional neural network. Computer Engineering, 2018, 44 (12): 222- 227.
doi: 10.19678/j.issn.1000-3428.0049051
|
| 5 |
李忠智, 尹航, 左剑凯, 等. 基于UNet++网络与多边输出融合策略的船舶检测模型. 计算机工程, 2022, 48 (4): 276- 283.
doi: 10.19678/j.issn.1000-3428.0058696
|
|
LI Z Z , YIN H , ZUO J K , et al. Ship detection model based on UNet++ network and multiple side-output fusion strategy. Computer Engineering, 2022, 48 (4): 276- 283.
doi: 10.19678/j.issn.1000-3428.0058696
|
| 6 |
WU T H , LI B Y , LUO Y H , et al. MTU-Net: multilevel TransUNet for space-based infrared tiny ship detection. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61 (3): 322- 331.
|
| 7 |
SHAO Z F , WANG L G , WANG Z Y , et al. Saliency-aware convolution neural network for ship detection in surveillance video. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30 (3): 781- 794.
doi: 10.1109/TCSVT.2019.2897980
|
| 8 |
|
| 9 |
祝冰艳, 陈志华, 盛斌. 基于感知增强Swin Transformer的遥感图像检测. 计算机工程, 2024, 50 (1): 216- 223.
doi: 10.19678/j.issn.1000-3428.0066941
|
|
ZHU B Y , CHEN Z H , SHENG B . Remote sensing image detection based on perceptually enhanced Swin Transformer. Computer Engineering, 2024, 50 (1): 216- 223.
doi: 10.19678/j.issn.1000-3428.0066941
|
| 10 |
|
| 11 |
REN G Y , DAI T H , BARMPOUTIS P , et al. Salient object detection combining a self-attention module and a feature pyramid network. Electronics, 2020, 9 (10): 1702.
doi: 10.3390/electronics9101702
|
| 12 |
ZHANG L Q , ZHANG Q , ZHAO R . Progressive dual-attention residual network for salient object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (9): 5902- 5915.
doi: 10.1109/TCSVT.2022.3164093
|
| 13 |
LI D , LIANG Q H , LIU H Q , et al. A novel multidimensional domain deep learning network for SAR ship detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 233- 242.
|
| 14 |
WANG S Y , CAI Z C , YUAN J Y . Automatic SAR ship detection based on multifeature fusion network in spatial and frequency domains. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 422- 432.
|
| 15 |
VU T, JANG H, PHAM T X, et al. Cascade RPN: delving into high-quality region proposal network with adaptive convolution[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 253-262.
|
| 16 |
|
| 17 |
LI W L , SHI M Q , HONG Z H . SCAResNet: a ResNet variant optimized for tiny object detection in transmission and distribution towers. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1- 5.
|
| 18 |
YUAN J Y , CAI Z C , WANG S Y , et al. A multitype feature perception and refined network for spaceborne infrared ship detection. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1- 11.
|
| 19 |
CHIL, JIANG B, MU Y. Fast Fourier Convolution[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2020: 4479-4488.
|
| 20 |
QUAN Y , ZHANG D , ZHANG L Y , et al. Centralized feature pyramid for object detection. IEEE Transactions on Image Processing, 2023, 32, 4341- 4354.
doi: 10.1109/TIP.2023.3297408
|
| 21 |
HAN Y Q , LIAO J W , LU T S , et al. KCPNet: knowledge-driven context perception networks for ship detection in infrared imagery. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1- 19.
|
| 22 |
REN S, HE K, GIRSHICK R, et al. Faster-RCNN: towards real-time object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2015: 232-241.
|
| 23 |
|
| 24 |
CAI Z, VASCONCELOS N. Cascade_RCNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
|
| 25 |
|
| 26 |
ZHANG X, WAN F, LIU C, et al. FreeAnchor: learning to match anchors for visual object detection[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 333-342.
|
| 27 |
ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[EB/OL]. [2024-06-01]. http://arxiv.org/abs/1912.02424.
|
| 28 |
|
| 29 |
SUN P, ZHANG R, JIANG Y, et al. Sparse RCNN: end-to-end object detection with learnable proposals[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 14449-14458.
|
| 30 |
CUI Z Y , LI Q , CAO Z J , et al. Dense attention pyramid networks for multi-scale ship detection in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57 (11): 8983- 8997.
doi: 10.1109/TGRS.2019.2923988
|
| 31 |
ZHAO Y , ZHAO L J , XIONG B L , et al. Attention receptive pyramid network for ship detection in SAR images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2738- 2756.
doi: 10.1109/JSTARS.2020.2997081
|