1 |
叶晨, 逯天洋, 肖潏灏, 等. 海事监控视频舰船目标检测研究现状与展望. 中国图象图形学报, 2022, 27 (7): 2078- 2093.
|
|
YE C , LU T Y , XIAO Y H , et al. Maritime surveillance videos based ships detection algorithms: a survey. Journal of Image and Graphics, 2022, 27 (7): 2078- 2093.
|
2 |
张玉莲. 光学图像海面舰船目标智能检测与识别方法研究[D]. 北京: 中国科学院大学, 2021.
|
|
ZHANG Y L. Research on intelligent detection and recognition methods of ship targets on the sea surface in optical images[D]. Beijing: University of Chinese Academy of Sciences, 2021. (in Chinese)
|
3 |
黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述. 光学精密工程, 2023, 31 (15): 2295- 2318.
|
|
HANG Z X , WU F L , FU Y , et al. Review of deep learning-based algorithms for ship target detection from remote sensing images. Optics and Precision Engineering, 2023, 31 (15): 2295- 2318.
|
4 |
CHENG S X , ZHU Y S , WU S H . Deep learning based efficient ship detection from drone-captured images for maritime surveillance. Ocean Engineering, 2023, 285 (2): 115440.
|
5 |
GIRSHICK R , DONAHUE J , DARRELL T , et al. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (1): 142- 158.
|
6 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2015: 1440-1448.
|
7 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6154-6162.
|
9 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37.
|
10 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 1-11.
|
11 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
12 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2021: 9992-10002.
|
13 |
LI A F , ZHU X F , HE S , et al. Water surface object detection using panoramic vision based on improved single-shot multibox detector. EURASIP Journal on Advances in Signal Processing, 2021, 2021, 1- 15.
doi: 10.1186/s13634-020-00710-6
|
14 |
ZHOU Z G , SUN J E , YU J B , et al. An image-based benchmark dataset and a novel object detector for water surface object detection. Frontiers in Neurorobotics, 2021, 15, 723336.
doi: 10.3389/fnbot.2021.723336
|
15 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 10778-10787.
|
16 |
HE K M , ZHANG X Y , REN S Q , et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916.
doi: 10.1109/TPAMI.2015.2389824
|
17 |
HAN X , ZHAO L N , NING Y , et al. ShipYOLO: an enhanced model for ship detection. Journal of Advanced Transportation, 2021, 2021, 1- 11.
|
18 |
童小钟, 魏俊宇, 苏绍璟, 等. 融合注意力和多尺度特征的典型水面小目标检测. 仪器仪表学报, 2023, 44 (1): 212- 222.
|
|
TONG X Z , WEI J Y , SU S J , et al. Typical small target detection on water surfaces fusing attention and multi-scale features. Chinese Journal of Scientific Instrument, 2023, 44 (1): 212- 222.
|
19 |
马赛, 解志斌, 邵长斌. 融合位置信息和上下文的水面目标检测方法. 小型微型计算机系统, 2024, 45 (9): 2221- 2227.
|
|
MA S , XIE Z B , SHAO C B . Water surface object detection method that combines positional information and context. Journal of Chinese Computer Systems, 2024, 45 (9): 2221- 2227.
|
20 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|
21 |
TAN M X, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. [S. l. ]: AAAI Press, 2019: 6105-6114.
|
22 |
LI Y , YAO T , PAN Y , et al. Contextual transformer networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (2): 1489- 1500.
|
23 |
周金涛, 高迪驹, 刘志全. 基于全景视觉的无人船水面障碍物检测方法. 计算机工程, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
|
ZHOU J T , GAO D J , LIU Z Q . Detection method of water-surface obstacles for unmanned ships based on panoramic vision. Computer Engineering, 2024, 50 (2): 113- 121.
doi: 10.19678/j.issn.1000-3428.0067238
|
24 |
|
25 |
|
26 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features//Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2019: 6022-6031.
|
27 |
|
28 |
CUBUK E D, ZOPH B, MANÉ D, et al. AutoAugment: learning augmentation strategies from data[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 113-123.
|
29 |
LIM S B, KIM L, KIM T, et al. Fast autoaugment[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 1-11.
|
30 |
DWIBEDI D, MISRA I, HEBERT M. Cut, paste and learn: surprisingly easy synthesis for instance detection[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 1310-1319.
|
31 |
|
32 |
GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2021: 2917-2927.
|
33 |
SUO Z , ZHAO Y , CHEN S , et al. BoxPaste: an effective data augmentation method for SAR ship detection. Remote Sensing, 2022, 14 (22): 5761.
doi: 10.3390/rs14225761
|
34 |
KIM J H , KIM N , PARK Y W , et al. Object detection and classification based on YOLOv5 with improved maritime dataset. Journal of Marine Science and Engineering, 2022, 10 (3): 377.
doi: 10.3390/jmse10030377
|
35 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
36 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 936-944.
|
37 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
38 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l. ]: AAAI Press, 2020: 12993-13000.
|
39 |
陈旭, 彭冬亮, 谷雨. 基于改进YOLOv5s的无人机图像实时目标检测. 光电工程, 2022, 49 (3): 69- 81.
|
|
CHEN X , PENG D L , GU Y . Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electronic Engineering, 2022, 49 (3): 69- 81.
|
40 |
WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D. C., USA: IEEE Press, 2018: 1451-1460.
|
41 |
|
42 |
|
43 |
|
44 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|