作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 340-349. doi: 10.19678/j.issn.1000-3428.0069139

• 开发研究与工程应用 • 上一篇    下一篇

MMD-YOLOv7:黑暗条件下车辆检测方法

黄金贵, 刘朋, 唐文胜*()   

  1. 湖南师范大学信息科学与工程学院, 湖南 长沙 410081
  • 收稿日期:2023-12-29 修回日期:2024-04-24 出版日期:2025-09-15 发布日期:2024-07-11
  • 通讯作者: 唐文胜
  • 基金资助:
    国家自然科学基金面上项目(62077014)

MMD-YOLOv7: Vehicle Detection Method Under Dark Conditions

HUANG Jingui, LIU Peng, TANG Wensheng*()   

  1. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, Hunan, China
  • Received:2023-12-29 Revised:2024-04-24 Online:2025-09-15 Published:2024-07-11
  • Contact: TANG Wensheng

摘要:

车辆检测与识别是智能交通和自动驾驶领域的一项关键技术, 对于道路安全和自动驾驶起着至关重要的作用, 一直是备受关注的研究热点。基于深度学习的目标检测模型, 使得车辆检测精度得到大幅提高, 但在夜间低光照和恶劣天气等不利条件下现有车辆检测技术的精度和可靠性仍然存在极大挑战。针对这一问题, 基于YOLOv7模型, 提出一种针对夜间黑暗条件下的车辆检测方法MMD-YOLOv7。首先基于坐标注意力(CA)机制构建一种新的多通道坐标注意力(MCCA)模块, 显著提升模型在捕捉全局和局部特征信息方面的能力。其次通过构建一个多尺度卷积(MSC)模块实现对扩展高效层聚合网络(ELAN)结构的针对性改进, 使得模型更好地适应夜间视觉环境中的噪声干扰, 同时提升了特征提取的能力和精度。最后, 引入了多分支模块(DBB), 进一步增强模型对复杂特征的捕捉能力。为了验证所提出的模型效果, 选取了BDD100K数据集中的6 000张夜间场景图片进行训练和测试, 实验结果表明, 该模型在车辆检测精度上相比原始YOLOv7模型提升了5.3百分点, 展现出了模型在处理低光照情况下的强大能力。此外, 在其他多个公开的车辆检测数据集上也表现出了很好的性能, 验证了该模型具备很强的鲁棒性和泛化能力。

关键词: YOLO模型, 目标检测, 车辆检测, 深度学习, 注意力机制

Abstract:

Vehicle detection and identification is a key technology in the field of intelligent transportation and autonomous driving. It plays a vital role in road safety and autonomous driving and has always been a research hotspot. Target detection models based on deep learning have greatly improved vehicle detection accuracy, but challenges related to the accuracy and reliability of existing vehicle detection technology under adverse conditions, such as low light at night and bad weather, remain. To address these challenges, a vehicle detection method and model specifically targeted at nighttime dark conditions-MMD-YOLOv7-is proposed based on the YOLOv7 model. First, a new Multi-Channel Coordinate Attention (MCCA) module is constructed based on the Coordinate Attention (CA) mechanism, which significantly improves the model's ability to capture global and local feature information. Second, a Multi-Scale Convolution (MSC) module is innovatively designed and constructed to achieve targeted improvements to the Efficient Layer Aggregation Networks (ELAN) structure, allowing the model to better adapt to noise interference in the night visual environment, while improving the capability and accuracy of feature extraction. Finally, the Diverse Branch Block (DBB) is introduced to further enhance the model's ability to capture complex features. To verify the effectiveness of the proposed model, 6 000 night scene images in the BDD100K dataset are selected for training and testing. The experimental results show that the proposed model's vehicle detection accuracy is improved by 5.3 percentage points compared to the original YOLOv7 model, indicating its strong ability to handle low light conditions. In addition, it shows good performance on multiple public vehicle detection datasets, verifying its strong robustness and generalization capabilities.

Key words: YOLO model, target detection, vehicle detection, deep learning, attention mechanism