1 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
2 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
|
3 |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10886-10895.
|
4 |
YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2636-2645.
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
6 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
7 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
8 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2961-2969.
|
9 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
10 |
LIU W , ANGUELOV D , ERHAN D , et al. SSD: single shot MultiBox detector. Berlin, Germany: Springer, 2016.
|
11 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 7263-7271.
|
13 |
|
14 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 213-229.
|
15 |
HNEWA M, RADHA H. Object detection under rainy conditions for autonomous vehicles: a review of state-of-the-art and emerging techniques[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2006.16471v4.
|
16 |
NABATI R, QI H R. RRPN: radar region proposal network for object detection in autonomous vehicles[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2019: 3093-3097.
|
17 |
CARRANZA-GARCÍA M , TORRES-MATEO J , LARA-BENÍTEZ P , et al. On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sensing, 2021, 13 (1): 89.
|
18 |
BENJUMEA A, TEETI I, CUZZOLIN F, et al. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2112.11798v4.
|
19 |
刘航博, 马礼, 李阳, 等. 无人驾驶中运用DQN进行障碍物分类的避障方法. 计算机工程, 2024, 50 (11): 380- 389.
doi: 10.19678/j.issn.1000-3428.0068769
|
|
LIU H B , MA L , LI Y , et al. An obstacle avoidance method using DQN to classify obstacles in unmanned driving. Computer Engineering, 2024, 50 (11): 380- 389.
doi: 10.19678/j.issn.1000-3428.0068769
|
20 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
21 |
谢竞, 邓月明, 王润民. 改进YOLOv8s的交通标识检测算法. 计算机工程, 2024, 40 (11): 338- 349.
doi: 10.19678/j.issn.1000-3428.0068742
|
|
XIE J , DENG Y M , WANG R M . Improved YOLOv8s traffic sign detection algorithm. Computer Engineering, 2024, 40 (11): 338- 349.
doi: 10.19678/j.issn.1000-3428.0068742
|
22 |
杨秀娟, 曾智勇. 基于YOLOv5的无人机航拍改进目标检测算法Dy-YOLO. 福建师范大学学报(自然科学版), 2024, 40 (1): 76- 86.
|
|
YANG X J , ZENG Z Y . Improved target detection algorithm Dy-YOLO for UAV aerial photography based on YOLOv5. Journal of Fujian Normal University(Natural Science Edition), 2024, 40 (1): 76- 86.
|
23 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
24 |
WEN L Y , DU D W , CAI Z W , et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding, 2020, 193, 102907.
|
25 |
DONG Z , WU Y W , PEI M T , et al. Vehicle type classification using a semisupervised convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 2020, 16 (4): 2247- 2256.
|
26 |
|