| 1 |
AHMAD S , HASANUZZAMAN M . Cotton production and uses: agronomy, crop protection, and postharvest technologies. Berlin, Germany: Springer, 2020.
|
| 2 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39 (6): 1137- 1149.
|
| 3 |
|
| 4 |
DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6568-6577.
|
| 5 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 10781-10790.
|
| 6 |
WU X W , SAHOO D , HOI S C H . Recent advances in deep learning for object detection. Neurocomputing, 2020, 396, 39- 64.
doi: 10.1016/j.neucom.2020.01.085
|
| 7 |
LIU Q H , ZHANG Y , YANG G P . Small unopened cotton boll counting by detection with MRF-YOLO in the wild. Computers and Electronics in Agriculture, 2023, 204, 107576.
doi: 10.1016/j.compag.2022.107576
|
| 8 |
FAN X P , CHAI X J , ZHOU J P , et al. Deep learning based weed detection and target spraying robot system at seedling stage of cotton field. Computers and Electronics in Agriculture, 2023, 214, 108317.
doi: 10.1016/j.compag.2023.108317
|
| 9 |
LIN Z , GUO W X . Cotton stand counting from unmanned aerial system imagery using MobileNet and CenterNet deep learning models. Remote Sensing, 2021, 13 (14): 2822.
doi: 10.3390/rs13142822
|
| 10 |
SUSA J A B, NOMBREFIA W C, ABUSTAN A S, et al. Deep learning technique detection for cotton and leaf classification using the YOLO algorithm[C]//Proceedings of the International Conference on Smart Information Systems and Technologies. Washington D. C., USA: IEEE Press, 2022: 1-6.
|
| 11 |
ZHANG Y J , MA B X , HU Y T , et al. Accurate cotton diseases and pests detection in complex background based on an improved YOLOx model. Computers and Electronics in Agriculture, 2022, 203, 107484.
doi: 10.1016/j.compag.2022.107484
|
| 12 |
席光泽, 周建平, 许燕. 基于改进YOLOv5s的复杂环境下棉花顶芽识别. 中国农机化学报, 2024, 45 (12): 275- 280.
|
|
XI G Z , ZHOU J P , XU Y , et al. Cotton top bud recognition in complex environment based on improved YOLOv5s. Journal of Chinese Agricultural Mechanization, 2024, 45 (12): 275- 280.
|
| 13 |
DANG F Y , CHEN D , LU Y Z , et al. YOLOWeeds: a novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems. Computers and Electronics in Agriculture, 2023, 205, 107655.
doi: 10.1016/j.compag.2023.107655
|
| 14 |
陈伟, 王晓龙, 张晏玮, 等. 基于改进YOLOv8的高速公路服务区车辆违停检测. 计算机工程, 2024, 50 (4): 11- 19.
doi: 10.19678/j.issn.1000-3428.0068901
|
|
CHEN W , WANG X L , ZHANG Y W , et al. Vehicle violation detection based on improved YOLOv8 in highway service areas. Computer Engineering, 2024, 50 (4): 11- 19.
doi: 10.19678/j.issn.1000-3428.0068901
|
| 15 |
柳进元, 张明锋. 基于YOLOv5算法的图像水深自动提取. 福建师范大学学报(自然科学版), 2023, 39 (1): 86- 92.
|
|
LIU J Y , ZHANG M F . Automatic image water depth extraction based on YOLOv5 algorithm. Journal of Fujian Normal University (Natural Science Edition), 2023, 39 (1): 86- 92.
|
| 16 |
CHEN Y F , ZHANG C Y , CHEN B , et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Computers in Biology and Medicine, 2024, 170, 107917.
doi: 10.1016/j.compbiomed.2024.107917
|
| 17 |
杨秀娟, 曾智勇. 基于YOLOv5的无人机航拍改进目标检测算法Dy-YOLO. 福建师范大学学报(自然科学版), 2024, 40 (1): 76- 86.
|
|
YANG X J , ZENG Z Y . Improved target detection algorithm Dy-YOLO for UAV aerial photography based on YOLOv5. Journal of Fujian Normal University (Natural Science Edition), 2024, 40 (1): 76- 86.
|
| 18 |
|
| 19 |
SHU C Y, LIU Y F, GAO J F, et al. Channel-wise knowledge distillation for dense prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 5311-5320.
|
| 20 |
SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, USA: IEEE Press, 2017: 843-852.
|
| 21 |
|
| 22 |
|
| 23 |
WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C] //Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2024: 36-47.
|
| 24 |
|
| 25 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
| 26 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-05-05]. https://arxiv.org/pdf/2402.13616.
|
| 27 |
BOLYA D, FOLEY S, HAYS J, et al. TIDE: a general toolbox for identifying object detection errors[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 558-573.
|
| 28 |
|
| 29 |
LIU Z, LI J, SHEN Z, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2736-2744.
|
| 30 |
WEI Y, PAN X Y, QIN H W, et al. Quantization MIMIC: towards very tiny CNN for object detection[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 274-290.
|
| 31 |
YANG Z, LI Z, SHAO M, et al. Masked generative distillation[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2021: 53-69.
|
| 32 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 618-626.
|