[1] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA: PMLR, 2017: 1273-1282. [2] 邹赛兰, 李卓, 陈昕. 面向分层联邦学习的传输优化研究[J]. 计算机科学, 2022, 49(12): 5-16. ZOU S L, LI Z, CHEN X. Research on transmission optimization for hierarchical federated learning[J]. Computer Science, 2022, 49(12): 5-16. (in Chinese) [3] SONG M K, WANG Z B, ZHANG Z F, et al. Analyzing user-level privacy attack against federated learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(10): 2430-2444. [4] MELIS L, SONG C Z, CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]//Proceedings of the IEEE Symposium on Security and Privacy. San Francisco, USA: IEEE Press, 2019: 691-706. [5] HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep models under the GAN: information leakage from collaborative deep learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2017: 603-618. [6] 秦宝东, 杨国栋, 马宇涵. 一种基于异步联邦学习的安全聚合机制[J]. 西安邮电大学学报, 2023, 28(1): 50-61. QIN B D, YANG G D, MA Y H. A secure aggregation mechanism based on asynchronous federated learning[J]. Journal of Xi’an University of Posts and Telecommunications, 2023, 28(1): 50-61. (in Chinese) [7] TRUEX S, BARACALDO N, ANWAR A, et al. A hybrid approach to privacy-preserving federated learning[J]. Informatik Spektrum, 2019, 42(5): 356-357. [8] XU G W, LI H W, ZHANG Y, et al. Privacy-preserving federated deep learning with irregular users[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 19(2): 1364-1381. [9] ZIGOMITROS A, CASINO F, SOLANAS A, et al. A survey on privacy properties for data publishing of relational data[J]. IEEE Access, 2020, 8: 51071-51099. [10] DWORK C. Differential privacy[C]//Proceedings of the 33rd International Conference on Automata, Languages and Programming. Berlin, Germany: Springer, 2006: 1-12. [11] LIU X Y, LI H W, XU G W, et al. Privacy-enhanced federated learning against poisoning adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4574-4588. [12] PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333-1345. [13] 康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. KANG H Y, JI Y L. Research on federated learning method based on local differential privacy[J]. Journal of Communications, 2022, 43(10): 94-105. (in Chinese) [14] BU Z Q, DONG J S, LONG Q, et al. Deep learning with Gaussian differential privacy[J]. Harvard Data Science Review, 2020(23): 10-1162. [15] ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York, USA: ACM, 2016: 308-318. [16] 王方伟, 谢美云, 李青茹, 等. 自适应裁剪的差分隐私联邦学习框架[J]. 西安电子科技大学学报, 2023, 50(4): 111-120. WANG F W, XIE M Y, LI Q R, et al. An adaptive clipping framework for differential privacy-based federated learning[J]. Journal of Xidian University, 2023, 50(4): 111-120. (in Chinese) [17] LIU W Y, CHENG J H, WANG X L. Hybrid differential privacy based federated learning for Internet of Things[J]. Journal of System Architecture, 2022, 124: 1-15. [18] 张晓龙, 罗文华. 利用动态裁剪差分隐私实现联邦学习入侵检测[J]. 小型微型计算机系统, 2024, 45(6): 1474-1481. ZHANG X L, LUO W H. Implementing federated learning intrusion detection using dynamic clipping differential privacy[J]. Journal of Chinese Computer Systems, 2024, 45(6): 1474-1481. (in Chinese) [19] 杨达森. 交通轨迹数据发布差分隐私保护算法研究[D]. 广州: 广东工业大学, 2020. YANG D S. Research on differential privacy protection algorithms for traffic trajectory data publication[D]. Guangzhou: Guangdong University of Technology, 2020. (in Chinese) [20] 余晟兴, 陈钟. 基于同态加密的高效安全联邦学习聚合框架[J]. 通信学报, 2023, 44(1): 14-28. YU S X, CHEN Z. An efficient and secure federated learning aggregation framework based on homomorphic encryption[J]. Journal of Communications, 2023, 44(1): 14-28. (in Chinese) [21] HU H, PENG R, TAI Y W, et al. Network trimming: a data-driven neuron pruning approach towards efficient deep architectures[EB/OL].[2024-01-02]. https://arxiv.org/pdf/1607.03250. [22] 尚涛, 赵铮, 舒王伟, 等. 基于等差隐私预算分配的大数据决策树算法[J]. 工程科学与技术, 2019, 51(2): 130-136. SHANG T, ZHAO Z, SHU W W, et al. Big data decision tree algorithm based on arithmetic differential privacy budget allocation[J]. Advanced Engineering Sciences, 2019, 51(2): 130-136. (in Chinese) [23] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [24] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009,1(4): 1-60. [25] 孙磊, 杨宇, 毛秀青, 等. 基于空间特征的生成对抗网络数据生成方法[J]. 电子与信息学报, 2023, 45(6): 1959-1969. SUN L, YANG Y, MAO X Q, et al. A data generation method based on generative adversarial networks with spatial characteristics[J]. Journal of Electronics & Information Technology, 2023, 45(6): 1959-1969. (in Chinese) [26] 于群, 沈志恒, 孙飞飞, 等. 面向云计算应用的用电负荷数据差分隐私保护方法[J]. 电力自动化设备, 2022, 42(7): 68-75. YU Q, SHEN Z H, SUN F F, et al. Differential privacy protection method for power consumption load data oriented to cloud computing applications[J].Electric Power Automation Equipment, 2022, 42(7): 68-75. (in Chinese) [27] 刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术[J].软件学报.2022,33(3): 1057-1092. LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving Techniques in Federated Learning[J]. Journal of Software, 2021, 33(3): 1057-1092. (in Chinese) |