作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2026, Vol. 52 ›› Issue (2): 265-274. doi: 10.19678/j.issn.1000-3428.0069644

• 网络空间安全 • 上一篇    

基于个性化梯度裁剪的联邦学习隐私保护算法

曹天涯, 张雨静, 贾俊杰, 张宇帆, 邓晓飞   

  1. 西北师范大学计算机科学与工程学院, 甘肃 兰州 730070
  • 收稿日期:2024-03-25 修回日期:2024-07-28 发布日期:2024-10-09
  • 作者简介:曹天涯,男,副教授,主研方向为密码学;张雨静(通信作者),硕士研究生,E-mail:17630047097@163.com;贾俊杰,副教授;张宇帆、邓晓飞,硕士研究生。
  • 基金资助:
    甘肃省自然科学基金(23JRRA686)。

Privacy Protection Algorithm for Federated Learning Based on Personalized Gradient Clipping

CAO Tianya, ZHANG Yujing, JIA Junjie, ZHANG Yufan, DENG Xiaofei   

  1. School of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2024-03-25 Revised:2024-07-28 Published:2024-10-09

摘要: 联邦学习作为目前深度学习最为常用的隐私保护框架,被众多机构广泛应用。此框架中的各个参与方通过上传模型参数数据实现本地数据不离本地,达到共享数据的目的。但在联邦学习中各个参与方频繁上传及接收参数时易出现隐私泄露问题。为解决这一问题,提出一种基于个性化梯度裁剪的联邦学习隐私保护算法(AADP_FL)。该算法根据参与方不同网络层历史数据的L1范数计算出各层的裁剪阈值,对梯度数据进行裁剪以限制梯度范围,预防梯度爆炸及梯度消失。同时计算各层的贡献度,根据各层贡献度为每层分配隐私预算,进而添加个性化噪声。参与方在上传数据时加入适量的噪声,以掩盖上传数据的具体内容,进而隐藏各个参与者的贡献率,保护各个参与方的数据安全。经过一系列实验证明,AADP_FL算法的准确率相较于常用的个性化梯度裁剪方法提升3.5百分点以上,相比于传统的联邦学习框架也能保持较高的准确率。同时,该算法在保持较高准确率的同时能严格保护参与方数据的隐私安全,使得模型性能与数据隐私性达到均衡状态。

关键词: 联邦学习, 隐私保护, 差分隐私, 隐私预算, 个性化梯度裁剪

Abstract: Federated learning, as the most commonly used privacy protection framework in deep learning, is widely applied by many institutions. The various participants in this framework achieve the goal of sharing data by uploading model parameter data without leaving the local data. However, in federated learning, privacy leakage occurs when various parties frequently upload and receive parameters. To address this issue, a personalized gradient clipping-based federated learning privacy preserving algorithm (AADP-FL) is proposed. This algorithm calculates the clipping threshold for each layer based on the L1 norm of historical data from different network layers of the participants. The gradient data is then clipped to limit the gradient range and prevent gradient explosion and vanishing gradients. Simultaneously, the contribution of each layer is calculated, privacy budgets are allocated for each layer based on their contribution, and then personalized noise is added. Participants add an appropriate amount of noise when uploading data to conceal the specific content, thereby hiding the contribution rate of each participant and improving the data security for each participant. A series of experiments reveal that the accuracy of this algorithm is superior compared to the commonly used personalized gradient clipping methods, with an accuracy increase of over 3.5 percentage points. This algorithm can also maintain a high accuracy compared with traditional federated learning frameworks. It can effectively protect the privacy of participant data while maintaining high accuracy, achieving a balance between model performance and data privacy.

Key words: federated learning, privacy protection, differential privacy, privacy budget, personalized gradient clipping

中图分类号: