1 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1602.05629.
|
2 |
吴汉舟, 张杰, 李越, 等. 人工智能模型水印研究进展. 中国图象图形学报, 2023, 28 (6): 1792- 1810.
|
|
WU H Z , ZHANG J , LI Y , et al. Overview of artificial intelligence model watermarking. Journal of Image and Graphics, 2023, 28 (6): 1792- 1810.
|
3 |
|
4 |
FAN L X , NG K W , CHAN C S , et al. DeepIPR: deep neural network ownership verification with passports. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (10): 6122- 6139.
doi: 10.1109/TPAMI.2021.3088846
|
5 |
LI B W , FAN L X , GU H L , et al. FedIPR: ownership verification for federated deep neural network models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4521- 4536.
doi: 10.1109/TPAMI.2022.3195956
|
6 |
SHAO S, YANG W Y, GU H L, et al. FedTracker: furnishing ownership verification and traceability for federated learning model[EB/OL]. [2023-08-01]. https://arxiv.org/abs/2211.07160v3.
|
7 |
UCHIDA Y, NAGAI Y, SAKAZAWA S, et al. Embedding watermarks into deep neural networks[C]//Proceedings of the ACM on International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2017: 269-277.
|
8 |
WANG J F , WU H Z , ZHANG X P , et al. Watermarking in deep neural networks via error back-propagation. Electronic Imaging, 2020, 32 (4): 1- 9.
|
9 |
CHEN H L, ROUHANI B D, FU C, et al. DeepMarks: a secure fingerprinting framework for digital rights management of deep learning models[C]//Proceedings of the International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2019: 105-113.
|
10 |
ADI Y, BAUM C, CISSE M, et al. Turning your weakness into a strength: watermarking deep neural networks by backdooring[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1802.04633.
|
11 |
GU T Y, DOLAN-GAVITT B, GARG S. BadNets: identifying vulnerabilities in the machine learning model supply chain[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1708.06733.
|
12 |
LIU Y Q, MA S Q, AAFER Y, et al. Trojaning attack on neural networks[C]//Proceedings of Network and Distributed System Security Symposium. Washington D. C., USA: IEEE Press, 2018: 1023-1031.
|
13 |
JIA H, CHOQUETTE-CHOO C A, CHANDRASEKARAN V, et al. Entangled watermarks as a defense against model extraction[C]//Proceedings of the 30th USENIX Security Symposium. [S. l. ]: USENIX Association, 2021: 1937-1954.
|
14 |
曾嘉忻, 张卫明, 张荣. 基于后门的鲁棒后向模型水印方法. 计算机工程, 2024, 50 (2): 132- 139.
URL
|
|
ZENG J X , ZHANG W M , ZHANG R . Robust backward model watermarking method based on backdoor. Computer Engineering, 2024, 50 (2): 132- 139.
URL
|
15 |
TEKGUL B G A, XIA Y X, MARCHAL S, et al. WAFFLE: watermarking in federated learning[C]//Proceedings of the 40th International Symposium on Reliable Distributed Systems (SRDS). Washington D. C., USA: IEEE Press, 2021: 310-320.
|
16 |
|
17 |
ZHAO J J , HU Q Y , LIU G Y , et al. AFA: adversarial fingerprinting authentication for deep neural networks. Computer Communications, 2020, 150, 488- 497.
doi: 10.1016/j.comcom.2019.12.016
|
18 |
李璇, 邓天鹏, 熊金波, 等. 基于模型后门的联邦学习水印. 软件学报, 2024, 35 (7): 3454- 3468.
|
|
LI X , DENG T P , XIONG J B , et al. Federated learning watermark based on model backdoor. Journal of Software, 2024, 35 (7): 3454- 3468.
|
19 |
WU T , LI X H , MIAO Y B , et al. CITS-MEW: multi-party entangled watermark in cooperative intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (3): 3528- 3540.
doi: 10.1109/TITS.2022.3225116
|
20 |
|
21 |
CARLINI N, LIU C, ERLINGSSON Ú, et al. The secret sharer: evaluating and testing unintended memorization in neural networks[EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1802.08232v2.
|
22 |
SHOKRI R, STRONATI M, SONG C Z, et al. Membership inference attacks against machine learning models[C]//Proceedings of the IEEE Symposium on Security and Privacy (SP). Washington D. C., USA: IEEE Press, 2017: 3-18.
|
23 |
YANG Q , LIU Y , CHEN T J , et al. Federated machine learning. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19.
|
24 |
KAIROUZ P , MCMAHAN H B , AVENT B , et al. Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 2021, 14 (1-2): 1- 210.
|
25 |
LI Y Z , CHEN C , LIU N , et al. A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network, 2021, 35 (1): 234- 241.
doi: 10.1109/MNET.011.2000263
|
26 |
|
27 |
|
28 |
WEI K , LI J , DING M , et al. Federated learning with differential privacy: algorithms and performance analysis. IEEE Transactions on Information Forensics and Security, 2020, 15, 3454- 3469.
doi: 10.1109/TIFS.2020.2988575
|
29 |
YI X, PAULET R, BERTINO E. Homomorphic encryption[M]//Tutorials on the Foundations of Cryptography. Berlin, Germany: Springer, 2014: 27-46.
|
30 |
FANG H K , QIAN Q . Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet, 2021, 13 (4): 94.
doi: 10.3390/fi13040094
|
31 |
YANG W Y, ZHU G X, YIN Y G, et al. FedSOV: federated model secure ownership verification with unforgeable signature[EB/OL]. [2023-08-01]. https://arxiv.org/abs/2305.06085v1.
|