1 |
陆泉, 张良韬. 处理流程视角下的大数据技术发展现状与趋势. 信息资源管理学报, 2017, 7(4): 17- 28.
doi: 10.13365/j.jirm.2017.04.017
|
|
LU Q, ZHANG L T. Evolutive status and trends of big data technology from the perspective of processing flow. Journal of Information Resource Management, 2017, 7(4): 17- 28.
doi: 10.13365/j.jirm.2017.04.017
|
2 |
QI Q S, XU Z Y, RAIN P. Big data analytics challenges to implementing the intelligent Industrial Internet of Things (IIoT)systems in sustainable manufacturing operations. Technological Forecasting and Social Change, 2023, 190, 122401.
doi: 10.1016/j.techfore.2023.122401
|
3 |
吴信东, 董丙冰, 堵新政, 等. 数据治理技术. 软件学报, 2019, 30(9): 2830- 2856.
|
|
WU X D, DONG B B, DU X Z, et al. Data governance technology. Journal of Software, 2019, 30(9): 2830- 2856.
|
4 |
张思思, 高旭光, 滑文强. 基于聚类与人工神经网络的遥感图像信息提取方法. 电子设计工程, 2020, 28(15): 106- 109.
doi: 10.14022/j.issn1674-6236.2020.15.024
|
|
ZHANG S S, GAO X G, HUA W Q. Remote sensing image information extraction method based on clustering and artificial neural network. Electronic Design Engineering, 2020, 28(15): 106- 109.
doi: 10.14022/j.issn1674-6236.2020.15.024
|
5 |
何雯, 白翰茹, 李超. 基于联邦学习的企业数据共享探讨. 信息与电脑, 2020, 32(8): 173- 176.
|
|
HE W, BAI H R, LI C. Research of enterprise data sharing based on federated learning. Information and Computers, 2020, 32(8): 173- 176.
|
6 |
URL
|
7 |
ZHANG J L, CHEN J J, WU D, et al. Poisoning attack in federated learning using generative adversarial nets[C]//Proceedings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering. Washington D. C., USA: IEEE Press, 2019: 12-19.
URL
|
8 |
XIE C, HUANG K, CHEN P Y, et al. DBA: distributed backdoor attacks against federated learning[C]//Proceedings of International Conference on Learning Representations. [S. l. ]: AAAI Press, 2019: 101-106.
URL
|
9 |
宋华伟, 李升起, 万方杰, 等. 非独立同分布场景下的联邦学习优化方法. 计算机工程, 2024, 50(3): 166- 172.
doi: 10.19678/j.issn.1000-3428.0067791
|
|
SONG H W, LI S Q, WAN F J, et al. Federated learning optimization method in Non-IID scenarios. Computer Engineering, 2024, 50(3): 166- 172.
doi: 10.19678/j.issn.1000-3428.0067791
|
10 |
王永康, 翟弟华, 夏元清. 联邦学习中抵抗大量后门客户端的鲁棒聚合算法. 计算机学报, 2023, 46(6): 1302- 1314.
doi: 10.11897/SP.J.1016.2023.01302
|
|
WANG Y K, HUO D H, XIAO Y Q. A robust aggregation algorithm against a large group backdoor clients in federated learning system. Journal of Computer Science, 2023, 46(6): 1302- 1314.
doi: 10.11897/SP.J.1016.2023.01302
|
11 |
郑昊, 许凯, 柏琪, 等. 基于梯度检测的联邦学习标签翻转攻击防御方法. 信息与电脑(理论版), 2023, 35(12): 105-107, 124.
|
|
ZHENG H, XU K, BAI Q, et al. A gradient detection—based defence approach for federated learning label flipping attacks. Information and Computer (Theoretical Edition), 2023, 35(12): 105-107, 124.
|
12 |
BLANCHARD P, MHAMDI E M E, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 118-128.
URL
|
13 |
YIN D, CHEN Y D, RAMCHANDRAN K, et al. Byzantine-robust distributed learning: towards optimal statistical rates[EB/OL]. [2023-05-29]. https://arxiv.org/pdf/1803.01498.
URL
|
14 |
刘艺璇, 陈红, 刘宇涵, 等. 联邦学习中的隐私保护技术. 软件学报, 2022, 33(3): 1057- 1092.
|
|
LIU Y X, CHEN H, LIU Y H, et al. Privacy-preserving techniques in federated learning. Journal of Software, 2022, 33(3): 1057- 1092.
|
15 |
URL
|
16 |
URL
|
17 |
CID-FUENTES J A, SZABO C, FALKNER K. Adaptive performance anomaly detection in distributed systems using online SVMs. IEEE Transactions on Dependable and Secure Computing, 2018, 17(5): 928- 941.
doi: 10.1109/TDSC.2018.2821693
|
18 |
SU S B, XIAO L M, RUAN L, et al. ADCMO: an anomaly detection approach based on local outlier factor for continuously monitored object[C]//Proceedings of 2019 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Washington D. C., USA: IEEE Press, 2019: 865-870.
URL
|
19 |
CAO D, CHANG S, LIN Z J, et al. Understanding distributed poisoning attack in federated learning[C]// Proceedings of 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). Washington D. C., USA: IEEE Press, 2019: 233-239.
URL
|
20 |
ZHAO Y, CHEN J J, ZHANG J L, et al. Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks. Concurrency and Computation: Practice and Experience, 2022, 34(7): e5906.
doi: 10.1002/cpe.5906
|
21 |
|
22 |
SHEJWALKAR V, HOUMANSADR A. Manipulating the Byzantine: optimizing model poisoning attacks and defenses for federated learning[C]//Proceedings of Conference on Network and Distributed System Security Symposium. [S. l. ]: Internet Society, 2021: 135-141.
URL
|
23 |
PILLUTLA K, KAKADE S M, HARCHAOUI Z. Robust aggregation for federated learning. IEEE Transactions on Signal Processing, 2022, 70, 1142- 1154.
doi: 10.1109/TSP.2022.3153135
|
24 |
|
25 |
XIE C, KOYEJO S, GUPTA I. Zeno: distributed stochastic gradient descent with suspicion-based faulttoler-ance[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: AAAI Press, 2019: 689.
URL
|
26 |
FUNG C, YOON C J M, BESCHASTNIKH I. The limitations of federated learning in sybil settings[C]//Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020). Berkeley, USA: USENIX Association, 2020: 301-316.
|
27 |
MCMAHAN B H, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decen-tralized data[EB/OL]. [2023-05-29]. https://arxiv.org/abs/1602.05629v3.
|
28 |
邹咸林. 自然最近邻居在高维数据结构学习中的应用[D]. 重庆: 重庆大学, 2011.
|
|
ZOU X L. Learning structure features in high-dimensional data based on natural nearest neighbor[D]. Chongqing: Chongqing University, 2011. (in Chinese)
|
29 |
SCHUBERT E, ZIMEK A, KRIEGEL H P. Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection. Data mining and knowledge discovery, 2014, 28(1): 190- 237.
doi: 10.1007/s10618-012-0300-z
|
30 |
ANTON S D D, SINHA S, SCHOTTEN H D. Anomaly-based intrusion detection in industrial data with SVM and random forests[C]//Proceedings of 2019 International Conference on software, Telecommunications and Computer Networks (SoftCOM). Washington D. C., USA: IEEE Press, 2019: 1-6.
URL
|
31 |
HUANG S, BAI Y, WANG Z, et al. Defending against poisoning attack in federated learning using isolated forest[C]//Proceedings of the 2nd International Conference on Computer, Control and Robotics (ICCCR). Washington D. C., USA: IEEE Press, 2022: 224-229.
URL
|