1 |
QI C R, LITANY O, HE K M, et al. Deep Hough voting for 3D object detection in point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 9277-9286.
URL
|
2 |
苏鸣方, 胡立坤, 黄润辉. 基于上下文注意力的室外点云语义分割方法. 计算机工程, 2023, 49 (3): 248- 256.
doi: 10.19678/j.issn.1000-3428.0064100
|
|
SU M F , HU L K , HUANG R H . Semantic segmentation method for outdoor point clouds based on contextual attention. Computer Engineering, 2023, 49 (3): 248- 256.
doi: 10.19678/j.issn.1000-3428.0064100
|
3 |
高庆吉, 李天昊, 邢志伟, 等. 基于区块特征融合的点云语义分割方法. 计算机工程, 2022, 48 (9): 37-44, 54.
doi: 10.19678/j.issn.1000-3428.0063863
|
|
GAO Q J , LI T H , XING Z W , et al. Point cloud semantic segmentation method based on block feature fusion. Computer Engineering, 2022, 48 (9): 37-44, 54.
doi: 10.19678/j.issn.1000-3428.0063863
|
4 |
宁小娟, 巩亮, 张金磊. 基于激光点云的道路可通行区域检测方法. 计算机工程, 2022, 48 (4): 22- 29.
doi: 10.19678/j.issn.1000-3428.0061717
|
|
NING X J , GONG L , ZHANG J L . Detection method of passable road areas based on laser point clouds. Computer Engineering, 2022, 48 (4): 22- 29.
doi: 10.19678/j.issn.1000-3428.0061717
|
5 |
|
6 |
|
7 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 5105-5114.
URL
|
8 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 652-660.
URL
|
9 |
ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3d object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4490-4499.
URL
|
10 |
仇真, 奚雪峰, 崔志明, 等. 基于多分辨率自蒸馏网络的小样本图像分类. 计算机工程, 2022, 48 (12): 232- 240.
doi: 10.19678/j.issn.1000-3428.0064011
|
|
QIU Z , XI X F , CUI Z M , et al. Few-shot image classification based on multi-resolution self-distillation network. Computer Engineering, 2022, 48 (12): 232- 240.
doi: 10.19678/j.issn.1000-3428.0064011
|
11 |
WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 9925-9934.
|
12 |
霍光, 林大为, 刘元宁, 等. 基于轻量级卷积神经网络的小样本虹膜图像分割. 吉林大学学报(理学版), 2023, 61 (3): 583- 591.
doi: 10.13413/j.cnki.jdxblxb.2022078
|
|
HUO G , LIN D W , LIU Y N , et al. Small-sample iris image segmentation based on lightweight convolutional neural networks. Journal of Jilin University(Science Edition), 2023, 61 (3): 583- 591.
doi: 10.13413/j.cnki.jdxblxb.2022078
|
13 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2017: 1126-1135.
URL
|
14 |
SCHUHMANN C, BEAUMONT R, VENCU R, et al. LAION-5B: an open large-scale dataset for training next generation image-text models[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2210.08402.
|
15 |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 8748-8763.
URL
|
16 |
SONG H, DONG L, ZHANG W N, et al. Clip models are few-shot learners: empirical studies on VQA and visual entailment[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2203.07190.
|
17 |
|
18 |
|
19 |
|
20 |
WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 456-472.
URL
|
21 |
SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7352-7362.
URL
|
22 |
ZHAO N, CHUA T S, LEE G H. Few-shot 3d point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8873-8882.
|
23 |
|
24 |
SONG S, LICHTENBERG S P, XIAO J. Sun RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 567-576.
|
25 |
DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3d reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 5828-5839.
URL
|
26 |
LIU J, DONG X, ZHAO S, et al. Generalized few-shot 3D object detection of LiDAR point cloud for autonomous driving[EB/OL]. [2023-09-10]. https://arxiv.org/abs/2302.03914.
|
27 |
XIE S, GU J, GUO D, et al. Pointcontrast: unsupervised pre-training for 3d point cloud understanding[C]//Proceedings of the 16th European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 574-591.
URL
|
28 |
YAMADA R, KATAOKA H, CHIBA N, et al. Point cloud pre-training with natural 3D structures[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 21283-21293.
|
29 |
YUAN S, LI X, HUANG H, et al. Meta-Det3D: learn to learn few-shot 3D object detection[C]//Proceedings of the Asian Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 1761-1776.
|
30 |
TANG W, BIQI Y, LI X, et al. Prototypical variational autoencoder for 3D few-shot object detection[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2023: 2566-2579.
|