[1] LIU S, LIU F, HAO Z H, et al. Unsupervised few-shot
image classification by learning features into clustering
space[C]//European Conference on Computer Vision.
Tel-Aviv, Switzerland: IEEE, 2022: 420-436.
[2] ZHANG Z D, XUE Z Y, CHEN Y, et al. Boosting
Verified Training for Robust Image Classifications via
Abstraction[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Vancouver,
Canada: IEEE, 2023: 16251-16260.
[3] KERR J, KIM C M, GOLDBERG K, et al. Lerf: Language
embedded radiance fields[C]//Proceedings of the
IEEE/CVF International Conference on Computer Vision.
Piscataway, NJ: IEEE, 2023: 19729-19739.
[4] Shen S, Zhao W L, Meng Z B, et al. Difftalk: Crafting
diffusion models for generalized audio-driven portraits
animation [C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. Piscataway,
NJ: IEEE, 2023: 1982-1991.
[5] 李哲铭,王晋东,侯建中,等. 基于显著区域优化的对抗样
本攻击方法[J]. 计算机工程, 2023, 49 (09): 246-255+2
64. DOI:10.19678/j.issn.1000-3428.0065814.
LI Z M, WANG J D, HOU J Z, et al. Adversarial example
attack method based on significant region optimization[J].
Computer Engineering, 2023, 49 (09):246-255+264.
doi:10.19678/j.issn.1000-3428.0065814.
[6] 赵宏,宋馥荣,李文改. 基于SE-AdvGAN的图像对抗样本
生成方法研究[J/OL]. 计算机工程, 1-13[2024-10-11].
https://doi.org/10.19678/j.issn.1000-3428.0068481.
Z H, SONG F R, Li W G. Research on image adver
-sarial example generation method based on SE-AdvGAN[J/OL]. Computer Engineering, 1-13[2024-10-11].
https://doi.org/10.19678/j.issn.1000-3428.0068481.
[7] 黄震. 基于模型检测的自动驾驶领域安全攸关对抗样
本识别方法[D]. 上海: 华东师范大学, 2023: 44-47.
HUANG Z. A model checking based approach to detect
safety-critical adversarial examples on autonomous driving
systems[D]. Shanghai: East China Normal University,
2023: 44-47.
[8] 蔺琛皓, 沈超, 邓静怡, 等. 虚假数字人脸内容生成与
检测技术[J]. 计算机学报, 2023, 46(3): 469-498.
LIN C H, SHEN C, DENG J Y, et al. Digitally forged face
content creation and detection[J]. Journal of Computing,
2023, 46(3): 469-498.
[9] MAHO T, FURON T, LE MERRER E. Surfree: a fast
surrogate-free black-box attack[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway, NJ: IEEE, 2021: 10430-10439.
[10] WANG X S, ZHANG Z L, TONG K H, et al. Triangle: A
query-efficient decision-based adversarial attack
[C]//European Conference on Computer Vision. Berlin:
Springer, 2022: 156-174.
[11] AHMED N, NATARAJAN T, Rao K R. Discrete cosine
transform[J]. IEEE transactions on Computers, 1974,
100(1): 90-93.
[12] RAHMATI A, MOOSAVI-DEZFOOLI S M, FROSSARD
P, et al. Geoda: a geometric framework for black-box
adver- sarial attacks[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Piscataway, NJ: IEEE, 2020: 8446-8455.
[13] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al.
Intrigu- ing properties of neural networks[C]//International
Confer- ence on Learning Representations. Washington
DC: ICLR, 2014: 1-12.
[14] BRENDEL W, RAUBER J, BETHGE M. Decision-Based
Adversarial Attacks: Reliable Attacks Against Black-Box
Machine Learning Models[C]//International Conference
on Learning Representations. Washington DC: ICLR,
2018: 1-12 [15] CHENG M, ZHANG H, HSIEH C J, et al. Query-efficient
hard-label black-box attack: An optimization-based
approach[C]//International Conference on Learning
Representations. Washington DC: ICLR, 2019: 1-12.
[16] Cheng M, Singh S, Chen P, et al. Sign-opt: A
query-efficient hard-label adversarial attack[J]. arXiv
preprint arXiv:1909.10773, 2019.
[17] CHEN J B, JORDAN M I, WAINWRIGHT M J.
Hopskipjumpattack: A query-efficient decision-based
attack [C]//2020 IEEE Symposium on Security and
Privacy (S&P). Piscataway, NJ: IEEE, 2020: 1277-1294.
[18] LI H C, XU X J, ZHANG X L, et al. Qeba:
Query-efficient boundary-based blackbox attack [C]//Proceedings of the IEEE/ CVF Conference on Computer
Vision and Pattern Recognition. Piscataway, NJ: IEEE,
2020: 1221-1230.
[19] Liu Y, Moosavi-Dezfooli S M, Frossard P. A
geometry-inspired decision-based attack[C]//Proceedings
of the IEEE/CVF International Conference on Computer
Vision. 2019: 4890-4898.
[20] SELVARAJU R R, COGSWELL M, Das A, et al.
Grad-cam: Visual explanations from deep networks via
gradient-based localization[C] //Proceedings of the IEEE
International Conference on Computer Vision. Piscataway,
NJ: IEEE, 2017: 618-626.
[21] RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet
Large Scale Visual Recognition Challenge[J].
International Journal of Computer Vision, 2015, 115:
211-252.
[22] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based
learning applied to document recognition[J]. Proceedings
of the IEEE, 1998, 86(11): 2278-2324.
[23] Krizhevsky A, Nair V, Hinton G. Cifar-10 (canadian
institute for advanced research)[J]. URL http://www. cs.
toronto. edu/kriz/cifar. html, 2010, 5(4): 1.
[24] Krizhevsky A, Hinton G. Learning multiple layers of
features from tiny images[J]. 2009.
[25] SIMONYAN K, ZISSERMAN A. Very deep
convolutional networks for large-scale image
recognition[C]//International Conference on Learning
Representations. Washington DC: ICLR, 2015: 1-14.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual
learning for image recognition[C]//Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway, NJ: IEEE, 2016: 770-778.
[27] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.
Rethinking the inception architecture for computer
vision[C]//Procee- dings of the IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway, NJ:
IEEE, 2016: 2818-2826.
[28] HOWARD A, SANDLER M, CHU G, et al. Searching for
mobilenetv3 [C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. Piscataway,
NJ: IEEE, 2019: 1314-1324.
[29] HUANG G, LIU Z, VAN Der MAATEN L, et al. Densely
connected convolutional networks[C]//Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway, NJ: IEEE, 2017: 4700-4708.
[30] Shukla S N, Sahu A K, Willmott D, et al. Simple and
efficient hard label black-box adversarial attacks in low
query budget regimes[C]//Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data
mining. 2021: 1461-1469.
[31] Kolesnikov A, Beyer L, Zhai X, et al. Big transfer (bit):
General visual representation learning[C]//Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part V 16.
Springer International Publishing, 2020: 491-507.
[32] Alexey D. An image is worth 16x16 words: Transformers
for image recognition at scale[J]. arXiv preprint arXiv:
2010.11929, 2020.
[33] Cheng M, Le T, Chen P Y, et al. Query-efficient
hard-label black-box attack: An optimization-based
approach[J]. arXiv preprint arXiv:1807.04457, 2018.
|