[1] 史佳琪,谭涛,郭经,等.基于深度结构多任务学
习的园区型综合能源系统多元负荷预测[J].电网技
术,2018,42(03):698-707.
Shi Jiaqi,Tan Tao,Guo Jing,et al.Multi-task learning
based on deep architecture for various types of load
forecasting in regional energy system
integration[J].Power System Technology,2018,
42(03):698-707(in Chinese).
[2] 叶剑华,曹旌,杨理,等.基于变分模态分解和多模型融
合的用户级综合能源系统超短期负荷预测[J].电网技
术,2022,46(07):2610-2622.
YE Jianhua1, CAO Jing, YANG Li, LUO Fengzhang.
Ultra Short-term Load Forecasting of User Level
Integrated Energy System Based on Variational Mode
Decomposition and Multi-model Fusion[J]. Power
System Technology,2022,46(07):2610-2622.
[3] 赵登福,庞文晨,张讲社,等.基于贝叶斯理论和在线学
习支持向量机的短期负荷预测[J].中国电机工程学
报,2005,(13):8-13.
Zhao Dengfu, Pang Wenchen, Zhang Jiangshe, Wang
Xifan. Based on Bayesian theory and online learning
SVM for short-term load forecasting [J]. Proceedingsof the CSEE,2005,(13):8-13.
[4] 赵峰,孙波,张承慧.基于多变量相空间重构和卡
尔曼滤波的冷热电联供系统负荷预测方法[J].中国
电机工程学报,2016,36(02):399-406.
Zhao Feng,Sun Bo,Zhang Chenghui.Cooling,heating
and electrical load forecasting method for CCHP
system based on multivariate phase space
reconstruction and kalman filter[J].Proceedings of the
CSEE,2016,36(02):399-406(in Chinese).
[5] 邓带雨,李坚,张真源,等.基于 EEMD-GRU-MLR
的短期电力负荷预测[J].电网技术,2020,44(02):
593-602.
Deng Daiyu , Li Jian , Zhang Zhenyuan , et
al . Short-term electric load forecasting based on
EEMD-GRU-MLR[J].Power System Technology,
2020,44(02):593-602(in Chinese).
[6] Antonio B , Pierluigi C , Pasquale F D , et
al . Multivariate quantile regression for short-term
probabilistic load forecasting[J].IEEE Transactions on
Power Systems,2020,35(1):628-638.
[7] 牛东晓,谷志红,邢棉,等.基于数据挖掘的 SVM 短期负
荷 预 测 方 法 研 究 [J]. 中 国 电 机 工 程 学
报,2006,(18):6-12..
Niu Dongxiao,Gu Zhihong,Xingmian,et al.Study
on forecasting approach to short-term load of SVM
based on data mining[J].Proceedings of the CSEE,
2006(18):6-12(in Chinese).
[8] Jason R,Etienne S.A comparison of prediction and
forecasting artificial intelligence models to estimate
the future energy demand in a district heating
system[J].Energy,2023,269.
[9] 史佳琪,张建华.基于多模型融合 Stacking 集成学
习方式的负荷预测方法[J].中国电机工程学报,
2019,39(14):4032-4041.
Shi Jiaqi,Zhang Jianhua.Load forecasting based on
multi-model by stacking ensemble
learning[J].Proceedings of the CSEE,2019,39(14):
4032-4041(in Chinese).
[10] 王炜,冯斌,黄刚,等.基于自注意力编码器和深
度神经网络的短期净负荷预测[J].中国电机工程学
报,2023,43(23):9072-9084.
Wang Wei,Feng Bin,Huang Gang,et al.Short-term
net load forecasting based on self-attention encoder
and deep neural network[J].Proceedings of the CSEE,
2023,43(23):9072-9084(in Chinese).
[11] 李丹,孙光帆,缪书唯,等.基于多维时序信息融
合的短期电力负荷预测方法[J].中国电机工程学报,
2023,43(S1):94-106.
Li Dan , Sun Guangfan , Miao Shuwei, et al. A
short-term power load forecasting method based on
multidimensional temporal information
fusion[J].Proceedings of the CSEE,2023,43(S1):
94-106(in Chinese).
[12] Nada M ,Hamid O ,Ismael J .Short-term electric
load forecasting using an EMD-BI-LSTM approach for
smart grid energy management system[J] .Energy &
Buildings,2023,288.
[13] Huixin Liu , Xiaodong Shen , Xisheng Tang , et
al.Day-ahead electricity price probabilistic forecasting
based on SHAP feature selection and LSTNet quantile
regression[J].Energies,2023,16(13):
[14] 王琛,王颖,郑涛,等.基于 ResNet-LSTM 网络和
注意力机制的综合能源系统多元负荷预测[J].电工
技术学报,2022,37(07):1789-1799.
Wang Chen,Wang Ying,Zheng Tao,et al.Multi-energy
load forecasting in integrated energy system based on
ResNet-LSTM network and attention
mechanism[J].Transactions of China Electrotechnical
Society,2022,37(07):1789-1799(in Chinese).
[15] Changchun Cai , Yuanjia Li , Zhenghua Su , et
al.Short-term electrical load forecasting based on
VMD and GRU-TCN hybrid network[J] . Applied
Sciences,2022,12(13):6647-6647.
[16] Wenhao Chenb , Guangjie Han , Hongbo Zhu , et
al.Short-term load forecasting with an ensemble model
using densely residual block and Bi-LSTM based on
the attention mechanism[J].Sustainability,2022,
14(24):16433-16433.
[17] Qin Y ,Zhiying L ,Hong L , et al.An improved
feature-time Transformer encoder-Bi-LSTM for
short-term forecasting of user-level integrated energy
loads[J].Energy & Buildings,2023,297.
[18] Haixu Wu,Jiehui Xu,Jianmin Wang,et al.Autoformer:
decomposition Transformers with auto-correlation for
long-term series forecasting[J].Advances in neural
information processing systems , 2021 , 34 :
22419-22430.
[19] Senfeng Cen,Lim C.G.Multi-task Learning of the
PatchTCN-TST model for short-term multi-load energy
forecasting considering indoor environments in a smart
building[J].IEEE Access,2024, 12:19553-19568.
[20] 鲁斌,霍泽健,俞敏.基于 LSTNet-Skip 的综合能源
系统多元负荷超短期预测[J].中国电机工程学报,
2023,43(06):2273-2283.
Lu Bin , Huo Zejian , Yu Min.Multi load ultra
short-term forecasting of integrated energy systembased on LSTNet-Skip[J].Proceedings of the CSEE,
2023,43(06):2273-2283(in Chinese).
[21] Chuanhui Zuo,Jialong Wang,Mingping Liu,et al.An
ensemble framework for short-term load forecasting
based on TimesNet and TCN[J].Energies,2023,
16(14):5330:
[22] 石卓见,冉启武,徐福聪.基于聚合二次模态分解
及 Informer 的短期负荷预测[J].电网技术,2023,
1467.
Shi Zhuojian,Ran Qiwu,Xu Fucong. Short-term load
forecasting based on aggregated secondary
decomposition and Informer[J] . Power System
Technology,2023,1467 (in Chinese).
[23] Dongxiao Niu,Min Yu,Lijie Sun,et al.Short-term
multi-energy load forecasting for integrated energy
systems based on CNN-BiGRU optimized by attention
mechanism[J].Applied Energy,2022,313.
[24] Feifei He,Jianzhong Zhou,Zhong-kai Feng,et al.A
hybrid short-term load forecasting model based on
variational mode decomposition and long short-term
memory networks considering relevant factors with
Bayesian optimization algorithm[J].Applied Energy,
2019,237:103-116.
[25] 李云松,张智晟.基于 GRU-TGTransformer 的综合能
源系统 多元 负荷 短期 预测 [J].电力系统 保护与 控
制,2023,51(15):33-41.
LI Yunsong, ZHANG Zhisheng. Multi load short-term
forecasting of an integrated energy system based on a
GRU TGTransformer[J]. Power System Protection and
Control, 2023,51(15):33-41.
[26] 李鹏,罗湘淳,孟庆伟,等.基于 Spearman 相关性阈值寻
优和 VMD-LSTM 的用户级综合能源系统超短期负
荷预测[J].全球能源互联网,2024,7(04):406-420.
LI Peng, LUO Xiangchun, MENG Qingwei, et al. Ultra
short-term load forecasting of user-level integrated
energy system based on Spearman threshold
optimization, variational mode decomposition, and
long short-term memory [J]. Journal of Global Energy
Interconnection, 2024, 7(04): 406-420.
[27] 张大海,杨宇辰,刘艳梅,等.基于 EMD 与 Spearman 相
关系数的混合直流线路纵联保护方法[J].电力系统保
护与控制,2021,49(09):1-11.
ZHANG Dahai, YANG Yuchen, LIU Yanmei, et al.
Hybrid HVDC line pilot protection method based on
EMD and Spearman correlation coefficient[J]. Power
System Protection and Control, 2021, 49(9): 1-11.
[28] 黄灿,桂卫华,谢永芳,等.基于改进互相关函数的氧化
铝 碳 分 过 程 多 重 时 滞 辨 识 [J]. 中 国 有 色 金 属 学
报,2011,21(05):1186-1191.
HUANG Can, GUI Weihua, XIE Yongfang, et al.
Multi-delays identification for alumina carbonation
decomposition process based on improved cross
correlation function[J]. The Chinese Journal of
Nonferrous Metals, 2011, 21(05): 1186-1191.
[29] 管奔,臧勇,吴迪平.基于互相关函数的轧机振动传递
时间滞后分析 [C]// 第七届中国钢铁年会论文
集,2009:443-448.
Guan Ben, Zang Yong, Wu Diping. Study of Delay
Time of Transfer of Rolling Mill Vibration Based on
Cross-correlation Function.[C]// Proceedings of the 7th
China Steel Conference, 2009:443-448.
|