[1] 沈旭,王淑营,田媛梦,等.基于知识图谱和图注意力的众
包任务推荐算法 [J]. 计算机应用研
究 ,2023,40(01):115-121.DOI:10.19734/j.issn.1001-3695.
2022.06.0284.
Shen Xu, Wang Shuying, Tian Yuanmeng, et al. Cro
wdsourcing task recommendation algorithm based on
knowledge graph and graph attention network[J]. Appl
ication Research of Computers, 2023,40(01):115-121.D
OI:10.19734/j.issn.1001-3695.2022.06.0284.
[2] Abhinav K, Bhatia G K, Dubey A, et al. TasRec: a f
ramework for task recommendation in crowdsourcing
[C]//Proceedings of the 15th International Conference
on Global Software Engineering. 2020: 86-95.
[3] Lu K, Wang J, Li M, et al. Personalized and qualityaware task recommendation in collaborative crowdsour
cing[C]//2021 IEEE 24th International Conference on
Computer Supported Cooperative Work in Design (CS
CWD). IEEE, 2021: 43-48.
[4] Wang X, Wang D, Xu C, et al. Explainable reasoning
over knowledge graphs for recommendation[C]//Proce
edings of the AAAI conference on artificial intelligen
ce. 2019, 33(01): 5329-5336.
[5] Huang Y, Zhao F, Gui X, et al. Path-enhanced explai
nable recommendation with knowledge graphs[J]. Wor
ld Wide Web, 2021, 24(5): 1769-1789.
[6] 徐静如,董红斌,赵炳旭,等.具有角色意识的社区服务型
时空众包任务分配[J].智能系统学报,2023,18(02):293-3
04.
XU Jingru, DONG Hongbin, ZHAO Bingxu, et al. C
ommunity service-oriented spatiotemporal crowdsourcin
g task allocation with role awareness[J]. CAAI transa
ctions on intelligent systems, 2023, 18(2): 293–304.
[7] 孟祥福;谢晶;张峰.考虑众包工人时空行为偏好的 top-k
任务推荐模型[J].小型微型计算机系统,2023,44(05):974
-980.DOI:10.20009/j.cnki.21-1106/TP.2021-0701.
Meng Xiangfu, Xie Jing, Zhang Feng.Top-k task reco
mmendation model considering spatio-temporal behavi
oral preferences of crowdsourced workers [J]. Journal
of Chinese Mini-Micro Computer Systems,2023,44(0
5):974-980.DOI:10.20009/j.cnki.21-1106/TP.2021-0701.
[8] Ismailoglu F. Aggregating user preferences in group r
ecommender systems: A crowdsourcing approach[J]. D
ecision Support Systems, 2022, 152: 113663.
[9] Miao H, Zhong X, Liu J, et al. Task Assignment wit
h Efficient Federated Preference Learning in Spatial
Crowdsourcing[J]. IEEE Transactions on Knowledge a
nd Data Engineering, 2023.
[10] Gao L, Gan Y, Zhou B, et al. A user-knowledge cro
wdsourcing task assignment model and heuristic algor
ithm for Expert Knowledge Recommendation Systems
[J]. Engineering Applications of Artificial Intelligence,
2020, 96: 103959.
[11] Huang W, Li P, Li B, et al. Towards stable task assi
gnment with preference lists and ties in spatial crowd
sourcing[J]. Information Sciences, 2023, 620: 16-30.
[12] Chen W, Wan H, Guo S, et al. Building and exploiti
ng spatial–temporal knowledge graph for next POI re
commendation[J]. Knowledge-Based Systems, 2022, 25
8: 109951.
[13] Guo Q, Zhuang F, Qin C, et al. A survey on knowle
dge graph-based recommender systems[J]. IEEE Trans
actions on Knowledge and Data Engineering, 2020, 3
4(8): 3549-3568.
[14] Wang H, Zhang F, Wang J, et al. Ripplenet: Propagat
ing user preferences on the knowledge graph for reco
mmender systems[C]//Proceedings of the 27th ACM i
nternational conference on information and knowledge
management. 2018: 417-426.
[15] Zhao Y, Wang X, Chen J, et al. Time-aware path rea
soning on knowledge graph for recommendation[J]. A
CM Transactions on Information Systems, 2022, 41(2):
1-26.
[16] Liu J, Huang W, Li T, et al. Cross-domain knowledg
e graph chiasmal embedding for multi-domain item-ite
m recommendation[J]. IEEE Transactions on Knowled
ge and Data Engineering, 2022, 35(5): 4621-4633.
[17] Chang Y, Zhou W, Cai H, et al. Meta-relation assiste
d knowledge-aware coupled graph neural network for
recommendation[J]. Information Processing & Manag
ement, 2023, 60(3): 103353.
[18] Phan H T, Nguyen N T, Hwang D. Convolutional attention neural network over graph structures for impro
ving the performance of aspect-level sentiment analysi
s[J]. Information Sciences, 2022, 589: 416-439.
[19] L (y) u S, Wang K, Wei Y, et al. GNN-based Advan
ced Feature Integration for ICS Anomaly Detection[J].
ACM Transactions on Intelligent Systems and Techn
ology, 2023, 14(6): 1-32.
[20] Yang B, Wang X, Zhang S, et al. Joint modelling of
task requirements and worker preferences based on
heterogeneous features and multiple interactions for k
nowledge-intensive crowdsourcing recommendation[J].
International Journal of Bio-Inspired Computation, 202
3, 22(2): 105-116.
[21] He X, Deng K, Wang X, et al. Lightgcn: Simplifying
and powering graph convolution network for recom
mendation[C]//Proceedings of the 43rd International A
CM SIGIR conference on research and development i
n Information Retrieval. 2020: 639-648.
[22] Chen Z, Fu L, Yao J, et al. Learnable graph convolut
ional network and feature fusion for multi-view learni
ng[J]. Information Fusion, 2023, 95: 109-119.
[23] Gao X, Feng F, Huang H, et al. Food recommendatio
n with graph convolutional network[J]. Information Sc
iences, 2022, 584: 170-183.Hou Yane, Gu Wennbo, Y
ang Kang, et al. Deep reinforcement learning recomm
endation system based on GRU and attention mechani
sm[J]. Engineering Letters, 2023, 31(2).
[24] Wang X, He X, Cao Y, et al. Kgat: Knowledge grap
h attention network for recommendation[C]//Proceedin
gs of the 25th ACM SIGKDD international conferenc
e on knowledge discovery & data mining. 2019: 950-
958.
[25] Ren X, Chen T, Nguyen QV, et al. Explicit knowledg
e graph reasoning for conversational recommendation
[J]. ACM Transactions on Intelligent Systems and Te
chnology. 2024 Jul 27;15(4):1-21.
[26] He X, Chua T S. Neural factorization machines for s
parse predictive analytics[C]//Proceedings of the 40th
International ACM SIGIR conference on Research an
d Development in Information Retrieval. 2017: 355-36
4.
[27] Zhang F, Yuan N J, Lian D, et al. Collaborative kno
wledge base embedding for recommender systems[C]//
Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining.
2016: 353-362.
[28] Wang H, Zhang F, Zhao M, et al. Multi-task feature
learning for knowledge graph enhanced recommendati
on[C]//The world wide web conference. 2019: 2000-2
010.
[29] Tai C Y, Wu M R, Chu Y W, et al. Mvin: Learning
multiview items for recommendation[C]//Proceedings
of the 43rd international ACM SIGIR conference on
research and development in information retrieval. 20
20: 99-108.
[30] Wang Z, Lin G, Tan H, et al. CKAN: Collaborative
knowledge-aware attentive network for recommender s
ystems[C]//Proceedings of the 43rd International ACM
SIGIR conference on research and development in I
nformation Retrieval. 2020: 219-228.
[31] Wang J, Yan Y, Zhao G. Task recommendation metho
d combining multimodal cognition and collaboration i
n mobile crowdsensing systems[J]. Computer Network
s, 2023, 229: 109796.
[32] Li X, Zhang L, Zhou M, Bian K. Task recommendati
on based on user preferences and user-task matching
in mobile crowdsensing[J]. Applied Intelligence. 2024
Jan;54(1):131-46.
[33] Sha X, Sun Z, Zhang J. Hierarchical attentive knowle
dge graph embedding for personalized recommendatio
n[J]. Electronic Commerce Research and Applications,
2021, 48: 101071.
|