[1] 刘建明. 古代壁画图像保护与智能修复技术研究
[D]; 浙江大学, 2010.
Liu Jianming. Research on the Protection and
Intelligent Restoration Technology of Ancient Mural
Images [D]; Zhejiang University, 2010.
[2] ASWATHA S M, MUKHERJEE J, BHOWMICK P.
An integrated repainting system for digital
restoration of Vijayanagara murals [J]. International
Journal of Image and Graphics, 2016, 16(01):
1650005.
[3] BLU T, THéVENAZ P, UNSER M. Linear
interpolation revitalized [J]. IEEE Transactions on
Image Processing, 2004, 13(5): 710-719.
[4] IRANI M, PELEG S. Improving resolution by image
registration [J]. CVGIP: Graphical models and
image processing, 1991, 53(3): 231-239.
[5] YANG J, WRIGHT J, HUANG T S, et al. Image
super-resolution via sparse representation [J]. IEEE
transactions on image processing, 2010, 19(11):
2861-2873.
[6] DONG C, LOY C C, HE K, et al. Image
super-resolution using deep convolutional networks
[J]. IEEE transactions on pattern analysis and
machine intelligence, 2015, 38(2): 295-307.
[7] DAI T, CAI J, ZHANG Y, et al. Second-order
attention network for single image super-resolution
[C]. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019:
11065-11074.
[8] YANG F, YANG H, FU J, et al. Learning texture
transformer network for image super-resolution [C].
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020:
5791-5800.
[9] WANG N, YU Z, LI Z, et al. MFAAnet: New
Feature Extraction Network in Image
Super-Resolution [C]. International Conference on
Intelligent Computing, 2024: 192-202.
[10] 蔡江河,陈飞,姜凡,等.基于梯度频率多阶段引导的深度图超分辨率方法 [J/OL]. 计 算 机 工
程 ,1-11[2025-02-17].https://doi.org/10.19678/j.issn.
1000-3428.0070478.
Cai Jianghe, Chen Fei, Jiang Fan, et al. Depth Map
Super-Resolution Method Based on Gradient
Frequency Multi-Stage Guidance [J/OL]. Computer
Engineering,1-11[2025-02-17].https://doi.org/10.196
78/j.issn.1000-3428.0070478.
[11] 徐志刚, 闫娟娟, 朱红蕾. 基于多尺度残差注意力
网络的壁画图像超分辨率重建算法 [J]. 激光与光
电子学进展, 2020, 57(16): 152-159.
Xu Zhigang, Yan Juanjuan, Zhu Honglei.
Super-Resolution Reconstruction Algorithm for
Mural Images Based on Multi-Scale Residual
Attention Network[J]. Laser & Optoelectronics
Progress, 2020, 57(16): 152-159.
[12] 曹建芳, 张自邦, 赵爱迪. 增强壁画图像艺术性的
超分辨率重建 [J]. 计算机工程与设计, 2021,
42(08): 2291-2298.
Cao Jianfang, Zhang Zibang, Zhao Aidi.
Super-Resolution Reconstruction for Enhancing the
Artistry of Mural Images[J]. Computer Engineering
and Design, 2021, 42(08): 2291 - 2298.
[13] CAO J, HU X, CUI H, et al. A generative adversarial
network model fused with a self ‐ attention
mechanism for the super‐resolution reconstruction
of ancient murals [J]. IET Image Processing, 2023,
17(8): 2336-2349.
[14] DONG Z. Application of Deep Learning Intelligent
Laser Scanning Technology in Mural Digitization [J].
Mathematical Problems in Engineering, 2022,
2022(1): 8439616.
[15] LI S, DONG Y, LI Z, et al. Dense Contrastive
Learning and Depth Dynamic Aggregation for
Reference-based Super-Resolution [Z]. Proceedings
of the 2024 2nd Asia Conference on Computer
Vision, Image Processing and Pattern Recognition.
Xiamen, China; Association for Computing
Machinery. 2024: Article
18.10.1145/3663976.3663997
[16] HU K, CHEN R, ZHAO Z-Q. Cross-Scale Dynamic
Alignment Network for Reference-Based
Super-Resolution [C]. International Conference on
Intelligent Computing, 2023: 98-108.
[17] SHIM G, PARK J, KWEON I S. Robust
reference-based super-resolution with
similarity-aware deformable convolution [C].
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020:
8425-8434.
[18] JIANG Y, CHAN K C, WANG X, et al. Robust
reference-based super-resolution via c2-matching
[C]. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021:
2103-2112.
[19] HUANG Y, ZHANG X, FU Y, et al. Task decoupled
framework for reference-based super-resolution [C].
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022:
5931-5940.
[20] 杨陈成 , 董秀成 , 侯 兵 , et al. 基于参考的
Transformer 纹理迁移深度图像超分辨率重建 [J].
图学学报, 2023, 44(05): 861-867.
Yang Chencheng, Dong Xiucheng, Hou Bing, et al.
Reference-Based Transformer Texture Transfer for
Depth Image Super-Resolution Reconstruction [J].
Journal of Graphics, 2023, 44(05): 861-867.
[21] LIU J, TANG J, WU G. Residual feature distillation
network for lightweight image super-resolution [C].
Computer Vision–ECCV 2020 Workshops: Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16,
2020: 41-55.
[22] LIU J, ZHANG W, TANG Y, et al. Residual feature
aggregation network for image super-resolution [C].
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020:
2359-2368.
[23] LU L, LI W, TAO X, et al. Masa-sr: Matching
acceleration and spatial adaptation for
reference-based image super-resolution [C].
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021:
6368-6377.
[24] SHEIKH H R, SABIR M F, BOVIK A C. A
statistical evaluation of recent full reference image
quality assessment algorithms [J]. IEEE Transactions
on image processing, 2006, 15(11): 3440-3451.
[25] WANG Z, BOVIK A C, SHEIKH H R, et al. Image
quality assessment: from error visibility to structural
similarity [J]. IEEE transactions on image processing,
2004, 13(4): 600-612.
[26] KUMAR R, MOYAL V. Visual image quality
assessment technique using FSIM [J]. International
Journal of Computer Applications Technology and
Research, 2013, 2(3): 250-254.
[27] GOODFELLOW I, POUGET-ABADIE J, MIRZA
M, et al. Generative adversarial nets [J]. Advances in
neural information processing systems, 2014, 27:
8834-8844.
[28] JOHNSON J, ALAHI A, FEI-FEI L. Perceptual
losses for real-time style transfer and
super-resolution [C]. Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part
II 14, 2016: 694-711.
[29] 段文杰. 中国敦煌壁画全集. 北凉·北魏 [M]. 中
国敦煌壁画全集. 北凉·北魏, 2006.
Duan Wenjie. The Complete Collection of
Dunhuang Murals in China: Northern Liang and
Northern Wei [M]. The Complete Collection of
Dunhuang Murals in China: Northern Liang and
Northern Wei, 2006.
[30] LEDIG C, THEIS L, HUSZáR F, et al.
Photo-realistic single image super-resolution using a
generative adversarial network [C]. Proceedings of
the IEEE conference on computer vision and pattern
recognition, 2017: 4681-4690. [31] LAN R, SUN L, LIU Z, et al. MADNet: A fast and
lightweight network for single-image super
resolution [J]. IEEE transactions on cybernetics,
2020, 51(3): 1443-1453.
[32] LU Z, LI J, LIU H, et al. Transformer for single
image super-resolution [C]. Proceedings of the
IEEE/CVF conference on computer vision and
pattern recognition, 2022: 457-466.
|