[1] HU J, GALLO O, PULLI K, et al. HDR deghosting: How
to deal with saturation?[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition.
2013: 1163-1170.
[2] KANG S B, UYTTENDAELE M, WINDER S, et al. High
dynamic range video[J]. ACM Transactions On Graphics
(TOG), 2003, 22(3): 319-325.
[3] ZIMMER H, BRUHN A, WEICKERT J. Freehand HDR
imaging of moving scenes with simultaneous resolution
enhancement[C]//Computer Graphics Forum. Oxford, UK:
Blackwell Publishing Ltd, 2011, 30(2): 405-414.
[4] GALLO O, GELFANDZ N, CHEN W C, et al.
Artifact-free high dynamic range imaging[C]//2009 IEEE
International conference on computational photography
(ICCP). IEEE, 2009: 1-7.
[5] JACOBS K, LOSCOS C, WARD G. Automatic
high-dynamic range image generation for dynamic
scenes[J]. IEEE Computer Graphics and Applications,
2008, 28(2): 84-93.
[6] PECE F, KAUTZ J. Bitmap movement detection: HDR for
dynamic scenes[C]//2010 Conference on Visual Media
Production. IEEE, 2010: 1-8.[7] KALANTARI N K, RAMAMOORTHI R. Deep high
dynamic range imaging of dynamic scenes[J]. ACM Trans.
Graph., 2017, 36(4): 144:1-144:12.
[8] PRABHAKAR K R, AGRAWAL S, SINGH D K, et al.
Towards practical and efficient high-resolution HDR
deghosting with CNN[C]//Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXI 16. Springer International
Publishing, 2020: 497-513.
[9] WU S, XU J R, TAI Y W, et al. Deep high dynamic range
imaging with large foreground motions[C]//Proceedings of
the European Conference on Computer Vision (ECCV).
2018: 117-132.
[10] CHUNG H, CHO N I. High dynamic range imaging of
dynamic scenes with saturation compensation but without
explicit motion compensation[C]//Proceedings of the
IEEE/CVF Winter Conference on Applications of
Computer Vision. 2022: 2951-2961.
[11] LIU Z, LIN W J, Li X P, et al. ADNet: Attention-guided
deformable convolutional network for high dynamic range
imaging[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021: 463-470.
[12] YAN Q S, GONG D, SHI Q F, et al. Attention-guided
network for ghost-free high dynamic range
imaging[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019:
1751-1760.
[13] ALEXEY D. An image is worth 16x16 words:
Transformers for image recognition at scale[J]. arxiv
preprint arxiv: 2010.11929, 2020.
[14] 田永林,王雨桐,王建功,等. 视觉 Transformer 研究的关键
问题:现状及展望.自动化学报,2022,48(4):957−979.
TIAN Y L, WANG Y T, WANG J G, et al. Key problems and progress
of vision Transformers: The state of the art and prospects. Acta
Automatica Sinica, 2022, 48(4): 957−979.
[15] 彭斌,白静,李文静,等.面向图像分类的视觉 Transformer
研究进展[J].计算机科学与探索,2024,18(2):320-344.
PENG B, BAI J, LI W J, et al. Survey on Visual
Transformer for Image Classification[J]. Journal of
Frontiers of Computer Science and Technology, 2024,
18(2): 320-344.
[16] LIU Z, WANG Y, ZENG B, et al. Ghost-free high dynamic
range imaging with context-aware
transformer[C]//European Conference on computer vision.
Cham: Springer Nature Switzerland, 2022: 344-360.
[17] YAN Q, CHEN W, ZHANG S, et al. A unified HDR
imaging method with pixel and patch level[C]//Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023: 22211-22220.
[18] CHEN R, ZHENG B, ZHANG H, et al. Improving
dynamic hdr imaging with fusion
transformer[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2023, 37(1): 340-349.
[19] GU A, DAO T. mamba: Linear-time sequence modeling
with selective state spaces[J]. arxiv preprint
arxiv:2312.00752, 2023.
[20] GABRIEL E. HDR image reconstruction from a single
exposure using deep CNNs[J]. ACM Trans. Graph., 2017,
36: 178: 1.
[21] 贺姗,蔺素珍,王彦博,等. 基于特征融合的多波段图像描
述生成方法[J]. 计算机工程, 2024, 50(6): 236-244.
HE S, LIN S Z, WANG Y B, et al. Multi-Band Image
Caption Generation Method Based on Feature Fusion[J].
Computer Engineering, 2024, 50(6): 236-244.
[22] GUO H, Li J M, DAI T, et al. Mambair: A simple baseline
for image restoration with state-space model[C]//European
Conference on Computer Vision. Springer, Cham, 2025:
222-241.
[23] ZHU L H, LIAO B C, Zhang Qian, et al. Vision mamba:
Efficient visual representation learning with bidirectional
state space model[J]. arxiv preprint arxiv:2401.09417,
2024.
[24] CHEN S, ATAPOUR-ABARGHOUEI A, ZHANG H Z, et
al. MxT: Mamba x Transformer for Image Inpainting[J].
arxiv preprint arxiv:2407.16126, 2024.
[25] CHEN L Y, CHU X J, ZHANG X Y, et al. Simple baselines
for image restoration[C]//European conference on
computer vision. Cham: Springer Nature Switzerland, 2022:
17-33.
[26] SEN P, KALANTARI N K, YAESOUBI M, et al. Robust
patch-based hdr reconstruction of dynamic scenes[J]. ACM
Trans. Graph., 2012, 31(6): 203:1-203:11.
[27] MANTIUK R, KIM K J, REMPEL A G, et al. HDR-VDP-2:
A calibrated visual metric for visibility and quality
predictions in all luminance conditions[J]. ACM
Transactions on graphics (TOG), 2011, 30(4): 1-14.
[28] EILERTSEN G, HAJISHARIF S, HANJI P, et al. How to
cheat with metrics in single-image HDR
reconstruction[C]//Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021:
3998-4007.
[29] 杨珍妹,李华锋,张亚飞. 面向高动态范围成像的内容恢
复和鬼影抑制网络[J]. 模式识别与人工智能, 37(4):
313-327.
YANG Z M, LI H F, ZHANG Y F. Missing Content
Restoration and Ghosting Suppression Network for High
Dynamic Range Imaging. Pattern Recognition and
Artificial Intelligence, 2024, 37(4): 313-327.
[30] GU K, WANG S, ZHAI G, et al. Blind quality assessment
of tone-mapped images via analysis of information,
naturalness, and structure[J]. IEEE Transactions on
Multimedia, 2016, 18(3): 432-443.
[31] FANG Y, ZHU H, MA K, et al. Perceptual evaluation for
multi-exposure image fusion of dynamic scenes[J]. IEEE
Transactions on Image Processing, 2019, 29: 1127-1138.
[32] YAN Q, GONG D, SHI Q, et al. Attention-guided network
for ghost-free high dynamic range
imaging[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019:
1751-1760.
[33] TANG L F, HUANG H, ZHANG Y F, et al.
Structure-embedded ghosting artifact suppression network
for high dynamic range image reconstruction[J].
Knowledge-Based Systems, 2023, 263: 110278.
[34] NIU Y Z, WU J B, LIU W X, et al. Hdr-gan: Hdr image
reconstruction from multi-exposed ldr images with large
motions[J]. IEEE Transactions on Image Processing, 2021,
30: 3885-3896.
|