[1] LI Q, WEI X, WANG Y, et al. Pulmonary
mucoepidermoid carcinoma in the Chinese population: A
clinical characteristic and prognostic analysis[J/OL].
Frontiers in Oncology, 2022, 12: 916906.
DOI:10.3389/fonc.2022.916906.
[2] ZARELLA M D, BOWMAN; D, AEFFNER F, et al. A
Practical Guide to Whole Slide Imaging: A White Paper
From the Digital Pathology Association[J/OL]. Archives of
Pathology & Laboratory Medicine, 2019, 143(2): 222-234.
DOI:10.5858/arpa.2018-0343-RA.
[3] ROJO M G, GARCÍA G B, MATEOS C P, et al. Critical
Comparison of 31 Commercially Available Digital Slide
Systems in Pathology[J/OL]. International Journal of
Surgical Pathology, 2006, 14(4): 285-305.
DOI:10.1177/1066896906292274.
[4] DU J, WANG L, GHOLIPOUR A, et al. Accelerated
Super-resolution MR Image Reconstruction via a 3D
Densely Connected Deep Convolutional Neural
Network[C/OL]//2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). Madrid, Spain:
IEEE, 2018: 349-355[2024-11-07].
https://ieeexplore.ieee.org/document/8621073/.
DOI:10.1109/BIBM.2018.8621073.
[5] MARQUES GODINHO T, LEBRE R, SILVA L B, et al.
An efficient architecture to support digital pathology in
standard medical imaging repositories[J/OL]. Journal of
Biomedical Informatics, 2017, 71: 190-197.
DOI:10.1016/j.jbi.2017.06.009.
[6] HAMILTON P W, WANG Y, MCCULLOUGH S J. Virtual
microscopy and digital pathology in training and
education[J/OL]. APMIS, 2012, 120(4): 305-315.
DOI:10.1111/j.1600-0463.2011.02869.x.
[7] CORNISH T C, SWAPP R E, KAPLAN K J. Whole-slide
Imaging: Routine Pathologic Diagnosis[J/OL]. Advances
in Anatomic Pathology, 2012, 19(3): 152-159.
DOI:10.1097/PAP.0b013e318253459e.
[8] XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated
Residual Transformations for Deep Neural Networks[J].
[9] 范文卓吴涛, WENZHUO FAN T W. 基于多分辨率特征
融合的任意尺度图像超分辨率重建[J/OL]. 计算机工程,
2023, 49(9): 217.
DOI:10.19678/j.issn.1000-3428.0065689.
Wenzhuo Fan, Tao Wu. "Arbitrary Scale Image
Super-Resolution Reconstruction Based on
Multi-Resolution Feature Fusion" [J/OL]. Computer
Engineering, 2023, 49(9): 217. DOI:
10.19678/j.issn.1000-3428.0065689.
[10] HUANG D, CHEN Y, LIU Y, et al. Adaptive Assignment
for Geometry Aware Local Feature Matching[C/OL]//2023
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Vancouver, BC, Canada: IEEE, 2023:
5425-5434[2025-02-17].
https://ieeexplore.ieee.org/document/10203396/.
DOI:10.1109/CVPR52729.2023.00525.
[11] JIANG K, LIU Z, LIU Z, et al. Locality Constrained
Analysis Dictionary Learning via K-SVD
Algorithm[A/OL]. arXiv, 2021[2025-02-17].
http://arxiv.org/abs/2104.14130.
[12] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-Realistic
Single Image Super-Resolution Using a Generative
Adversarial Network[J].
[13] 李培育张雅丽. 基于改进 SRGAN 模型的人脸图像超分
辨率重建[J]. 2023.
Peiyu Li, Yali Zhang. "Face Image Super-Resolution
Reconstruction Based on Improved SRGAN Model" [J].
2023.
[14] WANG X, YU K, WU S, et al. ESRGAN: Enhanced
Super-Resolution Generative Adversarial Networks[A/OL].
arXiv, 2018[2024-11-06]. http://arxiv.org/abs/1809.00219.
[15] MUKHERJEE L, BUI H D, KEIKHOSRAVI A, et al.
Super-resolution recurrent convolutional neural networks
for learning with multi-resolution whole slide images[J].
Journal of Biomedical Optics, 2019, 24.
[16] JIA F, CHEN Z, SONG Z, et al. CWT-Net:
Super-resolution of Histopathology Images Using a
Cross-scale Wavelet-based Transformer[A/OL]. arXiv,
2024[2025-01-13]. http://arxiv.org/abs/2409.07092.
[17] 杨郅树梁佳楠, ZHISHU YANG J L. 基于局部分离与多
尺度融合的图像超分辨率重建[J/OL]. 计算机工程,
2024, 50(7): 314.
DOI:10.19678/j.issn.1000-3428.0067857.
Zhishu Yang, Jianlan Liang. "Image Super-ResolutionReconstruction Based on Local Separation and Multi-Scale
Fusion" [J/OL]. Computer Engineering, 2024, 50(7): 314.
DOI:10.19678/j.issn.1000-3428.0067857.
[18] XU X, KAPSE S, PRASANNA P. Histo-Diffusion: A
Diffusion Super-Resolution Method for Digital Pathology
with Comprehensive Quality Assessment[A/OL]. arXiv,
2024[2025-01-26]. http://arxiv.org/abs/2408.15218.
DOI:10.48550/arXiv.2408.15218.
[19] CECHNICKA S, BALL J, BAUGH M, et al. URCDM:
Ultra-Resolution Image Synthesis in
Histopathology[A/OL]. arXiv, 2024[2025-01-26].
http://arxiv.org/abs/2407.13277.
DOI:10.48550/arXiv.2407.13277.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional
Block Attention Module[M/OL]//FERRARI V, HEBERT
M, SMINCHISESCU C, et al. Computer Vision – ECCV
2018: Vol. 11211. Cham: Springer International Publishing,
2018: 3-19[2024-11-07].
https://link.springer.com/10.1007/978-3-030-01234-2_1.
DOI:10.1007/978-3-030-01234-2_1.
[21] 王志浩钱沄涛, WANG ZHIHAO Q Y. 基于 Swin
Transformer 的双流遥感图像时空融合超分辨率重建
[J/OL]. 计算机工程 , 2024, 50(9): 33.
DOI:10.19678/j.issn.1000-3428.0068296.
Wang Zhihao, Qian Yuntao. "Dual-stream Remote Sensing
Image Spatiotemporal Fusion Super-Resolution
Reconstruction Based on Swin Transformer" [J/OL].
Computer Engineering, 2024, 50(9): 33. DOI:
10.19678/j.issn.1000-3428.0068296.
[22] CRESWELL A, WHITE T, DUMOULIN V, et al.
Generative Adversarial Networks: An Overview[J/OL].
IEEE Signal Processing Magazine, 2018, 35(1): 53-65.
DOI:10.1109/MSP.2017.2765202.
[23] WU Y. Combining global receptive field and spatial
spectral information for single-image hyperspectral
super-resolution[J]. 2023.
[24] LITJENS G, BANDI P, BEJNORDI B E, et al. 1399
H&E-stained sentinel lymph node sections of breast cancer
patients: the CAMELYON dataset[J]. 2018.
[25] LI Y, PING W. Cancer Metastasis Detection With Neural
Conditional Random Field[A/OL]. arXiv,
2018[2024-11-06]. http://arxiv.org/abs/1806.07064.
[26] SUN K, GAO Y, XIE T, et al. A low-cost pathological
image digitalization method based on 5 times
magnification scanning[J/OL]. Quantitative Imaging in
Medicine and Surgery, 2022, 12(5): 2813-2829.
DOI:10.21037/qims-21-749.
|