[1] Chang A X, Thomas F, Leonidas G. ShapeNet: An
information-rich 3d model repository[EB].
https://arxiv.org/abs/1512.03012, 2015.
[2] Sun X, Wu J, Zhang X, et al. Pix3D: Dataset and methods
for single-image 3d shape modeling[C]//IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake
City, 2018. USA: IEEE, 2018: 2974-2983.
[3] 韩磊, 高永彬, 史志才. 基于稀疏Transformer的雷达点
云三维目标检测[J]. 计算机工程, 2022, 48(11): 104-110.
Han L, Gao H B, Shi Z C. Three-Dimensional Object
Detection of Radar Point Cloud Based on Sparse
Transformer[J]. Computer Engineering, 2022, 48(11):
104-110.
[4] 谢帅康 , 熊风光 , 朱新杰 , 等 . 基于空间可变形
Transformer的三维点云配准方法[J]. 计算机工程, 2024,
50(03):224-232.
Xie S K, Xiong F G, Zhu X J, et al. Three-Dimensional
Point Cloud Registration Method Based on Spatial
Deformable Transformer[J]. Computer Engineering, 2024,
50(03):224-232.
[5] Wu J H, Wyman O, Tang Y D, et al. Multi-view 3D
reconstruction based on deep learning: A survey and
comparison of methods [J]. Neurocomputing, 2024, 582:
127553.
[6] Wang C, Reza M A, Vats V, et al. Deep learning-based 3d
reconstruction from multiple images: A survey[J].
Neurocomputing 2024, 597: 128018.
[7] Choy C B, Xu D, Gwak J, Chen K V, et al. 3D-R2N2: A
unified approach for single and multi-view 3d object
reconstruction[C]//European Conference on Computer
Vision, Amsterdam, Netherlands, 2016. GER: Springer,
2016: 628-644.
[8] Kar A, Hane C, Malik J. Learning a multi-view stereo
machine[C]//Conference and Workshop on Neural
Information Processing Systems. Long Beach, California,
2017. USA: MIT Press, 2017: 365-376.
[9] Yao Y, Luo Z X, Li S W, et al. R-MVSNet: Recurrent
mvsnet for high-resolution multi-view stereo depth
inference[C]//IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, 2018. USA: IEEE,
2018, 5525-5534.
[10] Huang P H, Matzen K, Kopf J, et al. DeepMVS: Learning
Multi-View Stereopsis[C]//IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, 2018.
USA: IEEE, 2018: 2821-2830.
[11] Wang M, Wang L J, Yi F, 3densinet: A robust neural
network architecture towards 3d volumetric object
prediction from 2d image[C]//ACM International
Conference on Multimedia, Mountain View, CA, 2017.
USA: ACM, 2017: 961-969.
[12] Shi Z, Meng Z, Xing Y, et al. 3D-BERT: End-to-end single
and multi-view 3d reconstruction with
transformers[C]//British Machine Vision Conference,
Online 2021. GER: Springer, 2021.
[13] Yang B, Wang S, Markham A, Trigoni N. Robust
attentional aggregation of deep feature sets for multi-view
3d reconstruction[J]. International Journal of Computer
Vision (IJCV), 2020, 128(1): 53-73.
[14] Jia X, Yang S R, Wang Y B, et al. Dual-view 3d
reconstruction via learning correspondence and
dependency of point cloud regions[J]. IEEE Transactions
on Image Processing, 2022, 31: 6831-6846.
[15] Zhu Z, Yang L, Li N, et al. Umiformer: Mining the
correlations between similar tokens for multi-view 3d
reconstruction[C]//IEEE International Conference on
Computer Vision, Paris, France, 2023. USA: IEEE, 2023:
18180-18189.[16] Jia X, Yang S R, Zhang J C, Peng Y X, Chen S Y. DV-Net:
Dual-view network for 3d reconstruction by fusing
multiple sets of gated control point clouds[J]. Pattern
Recognition Letters, 2020, 113: 376-382.
[17] Wen C, Zhang Y, Li Z, et al. Pixel2mesh++: Multi-view 3d
mesh generation via deformation[C]//IEEE International
Conference on Computer Vision, Seoul, Korea, 2019.
USA: IEEE, 2019: 1042-1051.
[18] Wen C, Zhang Y D, Cao C J, et al. Pixel2Mesh++: 3D
mesh generation and refinement from multi-view
images[J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023, 45(2): 2166-2180.
[19] Chen R, Yin X, Yang Y, et al. Multi-view pixel2mesh++:
3d reconstruction via pixel2mesh with more images[J].
The Visual Computer, 2023, 39: 5153–5166.
[20] Yang L, Zhu Z, Lin X, et al. Long-range grouping
transformer for multi-view 3d reconstruction[C]//IEEE
International Conference on Computer Vision, Paris,
France, 2023. USA: IEEE, 2023: 18211-18221.
[21] Fan H, Su H, Guibas L. A point set generation network for
3d object reconstruction from a single image[C]//IEEE
Conference on Computer Vision and Pattern Recognition,
Honolulu, Hawaii, 2017. USA: IEEE, 2017: 605-613.
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need[C]//Conference and Workshop on Neural
Information Processing Systems, Long Beach, California,
2017. USA: MIT Press, 2017: 5998-6008.
[23] Huang L, Wang W, Chen J, et al. Attention on attention for
image captioning[C]//IEEE International Conference on
Computer Vision, Seoul, Korea, 2019. USA: IEEE, 2019:
4634-4643.
[24] Yang Y, Feng C, Shen Y, et al. Foldingnet: point cloud
auto-encoder via deep grid deformation[C]//IEEE
Conference on Computer Vision and Pattern Recognition,
Salt Lake City, 2018. USA: IEEE, 2018: 206-215.
[25] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical
feature learning on point sets in a metric
space[C]//Conference and Workshop on Neural
Information Processing Systems, Long Beach, California,
2017. USA: MIT Press, 2017: 5099-5108.
[26] Zhang Z, Hua BS, Rosen D W, et al. Rotation invariant
convolutions for 3d point clouds deep learning[C]//IEEE
International Conference on 3D Vision, Canada, 2019.
USA: IEEE, 2019: 204-213.
[27] 胡从刚 , 杨立鹏 , 孙 永 奇 , 等 . 融 合 最 大 池 化 的
Conformer中文语音识别方法[J]. 计算机工程, 2024:
1-12.
Hu C G, Yang L P, Sun Y Q, et al. Chinese speech
recognition method of Conformer based on max pooling
[J]. Computer Engineering, 2024: 1-12.
|