[1] BHARADIYA J. A comprehensive survey of deep learning
techniques natural language processing[J]. European Journal
of Technology, 2023, 7(1): 58-66.
[2] WANG X, WANG H, YANG D. Measure and improve
robustness in NLP models: A survey[J]. arXiv preprint
arXiv:2112.08313, 2021.
[3] GOYAL S, DODDAPANENI S, KHAPRA M M, et al. A
survey of adversarial defenses and robustness in nlp[J].
ACM Computing Surveys, 2023, 55(14s): 1-39.
[4] SZEGEDY C. Intriguing properties of neural networks[J].
arXiv preprint arXiv:1312.6199, 2013.
[5] HENDRYCKS D, ZHAO K, BASART S, et al. Natural
adversarial examples[C]//Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition.
2021: 15262-15271.
[6] SHARIF M, BHAGAVATULA S, BAUER L, et al. A general
framework for adversarial examples with objectives[J].
ACM Transactions on Privacy and Security (TOPS), 2019,
22(3): 1-30.
[7] WANG W, WANG R, WANG L, et al. Towards a robust deep
neural network in texts: A survey[J]. arXiv preprint
arXiv:1902.07285, 2019.
[8] 仝鑫,王斌君,王润正,等.面向自然语言处理的深度学习对
抗样本综述[J].计算机科学,2021,48(01):258-267.
TONG Xin, WANG Binjun, WANG Runzheng, et al.
Survey on Adversarial $ample of Deep Learning Towards
Natural Language Processing [J]. Computer Science, 2021,
48(01): 258-267.
[9] 尹思纯.中国书法在日本的传播及其对中文教学的影响研
究[D].江苏大学,2022.
YIN Sichun. The Dissemination of Chinese Calligraphy
and Its Influence onChinese Language Teaching in Japan
[D]. Jiangsu University, 2022.
[10] QI F, YANG C, LIU Z, et al. Openhownet: An open
sememe-based lexical knowledge base[J]. arXiv preprint
arXiv:1901.09957, 2019.
[11] FELLBAUM C. WordNet[M]//Theory and applications of
ontology: computer applications. Dordrecht: Springer
Netherlands, 2010: 231-243.
[12] MARINI F, WALCZAK B. Particle swarm optimization
(PSO). A tutorial[J]. Chemometrics and Intelligent
Laboratory Systems, 2015, 149: 153-165.
[13] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese
neural networks for one-shot image recognition[C]//ICML
deep learning workshop. 2015, 2(1): 1-30.
[14] GARG S, RAMAKRISHNAN G. Bae: Bert-based
adversarial examples for text classification[J]. arXiv
preprint arXiv:2004.01970, 2020.
[15] XIAO C, LI B, ZHU J Y, et al. Generating adversarial
examples with adversarial networks[J]. arXiv preprint
arXiv:1801.02610, 2018.
[16] ZANG Y, QI F, YANG C, et al. Word-level textualadversarial attacking as combinatorial optimization[J].
arXiv preprint arXiv:1910.12196, 2019.
[17] JIN D, JIN Z, ZHOU J T, et al. Is bert really robust? a
strong baseline for natural language attack on text
classification and entailment[C]//Proceedings of the AAAI
conference on artificial intelligence. 2020, 34(05):
8018-8025.
[18] REN S, DENG Y, HE K, et al. Generating natural language
adversarial examples through probability weighted word
saliency[C]//Proceedings of the 57th annual meeting of the
association for computational linguistics. 2019:
1085-1097.
[19] XU X, KONG K, LIU N, et al. An LLM can Fool Itself: A
Prompt-Based Adversarial Attack[EB/OL]. 2023. arXiv
preprint arXiv:2310.13345.
[20] 仝鑫,王罗娜,王润正,等.面向中文文本分类的词级对抗样
本生成方法[J].信息网络安全,2020,20(09):12-16.
TONG Xin, WANG Luona, WANG Runzheng, et al. A
Generation Method of Word-level Adversarial Samples for
Chinese Text Classification [J]. Netinfo Security, 2020,
20(09): 12-16.
[21] 弓燕,张晓琳,刘月峰,等.面向中文文本分类的对抗样本生
成方法[J].电子器件,2023,46(05):1349-1356.
GONG Yan, ZHANG Xiaolin, LIU Yuefeng, et al.
Adversarial Examples Generation Method for Chinese Text
Classification [J]. Electronic Devices, 2023, 46(05):
1349-1356.
[22] 李相葛,罗红,孙岩.基于汉语特征的中文对抗样本生成方
法[J].软件学报,2023,34(11):5143-5161.
LI Xiangge, LUO Hong, SUN Yan. Adversarial Sample
Generation Method Based on Chinese Features [J]. Journal
of Software, 2023, 34(11): 5143-5161.
[23] 张云婷,叶麟,唐浩林,等.基于掩码语言模型的中文 BERT
攻击方法[J].软件学报,2024,35(07):3392-3409.
ZHANG Yunting, YE Lin, TANG Haolin, et al. Chinese
BERT Attack Method Based on Masked Language Model
[J]. Journal of Software, 2024, 35(07): 3392-3409.
[24] 陈鸣,杜庆治,邵玉斌,等.基于音形码的汉字相似度比对算
法[J].信息技术,2018,(11):73-75.
CHEN Ming, DU Qingzhi, SHAO Yubin, et al. Chinese
characters similarity comparison algorithm based on
phonetic code and shape code[J]. Information Technology,
2018, (11): 73-75.
[25] LIJUAN Z, YINGYING Z, ZHIWEI L, et al. The role of
orthographic and phonological processing during reading
Chinese sentences: Evidence from eye movements[J].
Frontiers in Psychology, 2023, 14: 1148815.
[26] TAYLOR I, TAYLOR M M. Writing and Literacy in
Chinese, Korean and Japanese: Revised edition[M]. John
Benjamins Publishing Company, 2014.
[27] WAND Y, KEULEERS E. Simplified Chinese Character
Distance Based on Ideographic Description
Sequences[C]//Proceedings of the Second Workshop on
Computation and Written Language (CAWL)@
LREC-COLING 2024. 2024: 59-66.
[28] NIU Y, XIE R, LIU Z, et al. Improved word representation
learning with sememes[C]//Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2017: 2049-2058.
[29] RANA S, JASOLA S, KUMAR R. A review on particle
swarm optimization algorithms and their applications to
data clustering[J]. Artificial Intelligence Review, 2011, 35:
211-222.
[30] 孙茂松,李景阳,郭志芃,等. THUCTC:一个高效的中
文 文 本 分 类 工 具 包 [EB/OL]. [2024-09-15].
http://thuctc.thunlp.org/.
SUN Maosong, LI Jingyang, GUO Zhipeng, et al.
THUCTC: An Efficient Chinese Text Classifier[EB/OL].
[2024-09-15]. http://thuctc.thunlp.org/.
[31] CONNEAU A, LAMPLE G, RINOTT R, et al. XNLI:
Evaluating cross-lingual sentence representations[J]. arXiv
preprint arXiv:1809.05053, 2018.
[32] ZENG G, QI F, ZHOU Q, et al. Openattack: An open-source
textual adversarial attack toolkit[J]. arXiv preprint
arXiv:2009.09191, 2020.
[33] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An
efficient alternative to SIFT or SURF[C]//2011
International conference on computer vision. Ieee, 2011:2564-2571.
[34] KARAMI E, PRASAD S, SHEHATA M. Image matching
using SIFT, SURF, BRIEF and ORB: performance
comparison for distorted images[J]. arXiv preprint
arXiv:1710.02726, 2017.
[35] AGBEMUKO D I, OKOKPUJIE I P, SALAMI M J E, et al.
Automated data extraction and character recognition for
handwritten test scripts using image processing and
convolutional neural networks[J]. Nigerian Journal of
Technological Development, 2024, 21(4): 97-115.
[36] DUBEY R, DAS I. Handwritten image detection using
DCGAN with sift and orb optical features[C]//2023 6th
International Conference on Information Systems and
Computer Networks (ISCON). IEEE, 2023: 1-6.
|