[1] ZHAO X B, YAO G Q, CHEN X J, et al. Diagenetic facies
classification and characterization of a high-temperature
and high-pressure tight gas sandstone reservoir: A casestudy in the Ledong area, Yinggehai Basin[J]. Marine and
Petroleum Geology, 2022, 140: 105665.
[2] LIU H, REN Y L, LI X, et al.Rock thin-section analysis
and identification based on artificial intelligent
technique[J]. Petroleum Science, 2022, 19(04):
1605-1621.
[3] 周能武, 卢双舫, 王民, 等.中国典型陆相盆地致密油成
储界限与分级评价标准[J]. 石油勘探与开发, 2021,
48(05): 939-949.
ZHOU N, LU S F, WANG M, et al. Standards for
Boundary and Classification Evaluation of Tight Oil
Reservoirs in Typical Terrestrial Basins in China[J].
Petroleum Exploration and Development, 2021, 48(05):
939-949.
[4] 刘宏坤, 艾勇, 王贵文, 等.深层、超深层致密砂岩储层
成岩相测井定量评价:以库车坳陷博孜-大北地区为例
[J]. 地质科技通报, 2023, 42(01): 299-310.
LIU H K, AI Y, WANG G W, et al. Quantitative
Evaluation of Diagenetic Facies Logging in Deep and
Ultra-deep Tight Sandstone Reservoirs: A Case Study in
the Bozi-Dabei Area of the Kuqa Depression[J]. Bulletin
of Geological Science and Technology, 2023, 42(01):
299-310.
[5] 魏兆胜, 覃建华, 李映艳,等.混积页岩油储层成岩相特
征及其成储意义——以吉木萨尔凹陷芦草沟组为例[J].
中国石油勘探, 2024, 29(6): 99-115.
WEI Z S, QIN J H, LI Y Y, et al. Differential diagenesis of
mud shale and its influence on reservoir capacity: a case
study in Lusaogou Formation, Jimsar Sag[J]. China
Petroleum Exploration, 2024, 29(6): 99-115.
[6] SONG Z X, YANG X L, XU Z L, et al. Graph-Based
Semi-Supervised Learning: A Comprehensive Review[J].
IEEE Transactions on Neural Networks and Learning
Systems, 2023: 8174-8194.
[7] YANG X, SONG Z, KING I, et al. A Survey on Deep
Semi-supervised Learning[J]. IEEE Transactions on
Knowledge and Data Engineering, 2022: 1-20.
[8] GUI J, CHEN T, ZHANG J, et al. A Survey on
Self-supervised Learning: Algorithms, Applications, and
Future Trends[J]. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024. DOI:
10.1109/TPAMI.2024.3415112.
[9] CHEN L Y, LI S B, BAI Q, et al. Review of Image
Classification Algorithms Based on Convolutional Neural
Networks[J]. Remote Sensing, 2021: 4712.
[10] PATTNAIK S, CHEN S, HELBA A, et al. Automatic
Carbonate Rock Facies Identification with Deep
Learning[C]//Day 2 Tue, October 27, 2020, Virtual. 2020.
[11] DENG T Q, XU C C, LANG X Z, et al. Diagenetic Facies
Classification in the Arbuckle Formation Using Deep
Neural Networks[J]. Mathematical Geosciences, 2021:
1491-1512.
[12] 蒋瑞刚.松辽盆地三肇凹陷致密储层地质评价[J].石油天
然气学报, 2021, 43(1):9.
JIANG R G. Geological Evaluation of Tight Reservoi
rs in the Sanjiao Depression, Songliao Basin. Journal
of Petroleum and Natural Gas, 2021, 43(1): 9.
[13] ANAND S K, KUMAR S. Experimental Comparisons of
Clustering Approaches for Data Representation[J]. ACM
Computing Surveys, 2023: 1-33.
[14] ABDULAH S, ATWA W, ABDELMONIEM A M. Active
clustering data streams with affinity propagation[J]. ICT
Express, 2022: 276-282.
[15] BRUSCO M J, STEINLEY D, STEVENS J, et al. Affinity
propagation: An exemplar-based tool for clustering in
psychological research[J]. British Journal of Mathematical
and Statistical Psychology, 2019: 155-182.
[16] LU S, CAI C, ZHONG Z, et al. Ultradeep carbonate
reservoir lithofacies classification based on a deep c
onvolutional neural network—A case study in the Tar
im Basin, China[J]. Interpretation, 2023, 11(3): T551-
T566.
[17] WANG A, ZHAO S, XIE K, et al. Attention mechani
sm-enhanced graph convolutional neural network for
unbalanced lithology identification[J]. Scientific Report
s, 2024, 14(1): 17319.
[18] VENKATESHWARAN B , RAMKUMAR M ,SIDDIQ
UI, NUMAIR AHMEDHAQUE, A. K. M. EahsanulS
ugavanam, G.Manobalaji, A.A Graph Convolutional N
etwork Approach to Qualitative Classification of Hydr
ocarbon Zones Using Petrophysical Properties in Well
Logs[J].Natural resources research, 2024, 33(2):637-6
64.
[19] 徐朝晖,刘钰铭,周新茂,等.基于卷积神经网络算法的自
动地层对比实验[J].石油科学通报, 2019, 4(1):10.
XU C H, LIU Y M, ZHOU X M, et al. Automatic
Stratigraphic Correlation Experiment Based on Convol
utional Neural Network Algorithm. Petroleum Science
Bulletin, 2019, 4(1): 10.
[20] ALSWAIDAN Z , ALFARRAJ M , LUQMAN H .Geology-constrained dynamic graph convolutional networ
ks for seismic facies classification[J].Computers & ge
osciences, 2024, 184(Feb.):1.1-1.8.
[21] SNELL J, SWERSKY K, ZEMEL R. Prototypical
networks for few-shot learning[J]. Advances in neural
information processing systems, 2017, 30.
[22] 朱筱敏,刘媛,方庆等.大型坳陷湖盆浅水三角洲形成条
件和沉积模式:以松辽盆地三肇凹陷扶余油层为例[J].
地学前缘,2012,19(01):89-99.
ZHU X M, LIU Y, FANG Q, et al. Formation Conditions
and Sedimentary Models of Large-Scale Depression
Lacustrine Shallow Water Deltas: A Case Study of the
Fuyu Oil Layer in the Sanjiao Depression, Songliao Basin
[J]. Earth Science Frontiers, 2012, 19(01): 89-99.
[23] 杨嘉明,王璐奕,杜欣蓉等.大庆—三肇凹陷扶余油层致
密储层成岩作用类型及序列 [J]. 化工管
理,2023(15):70-73.
YANG J M, WANG L Y, DU X R, et al. Diagenetic Types
and Sequences of Tight Reservoirs in the Fuyu Oil Layer
of the Daqing–Sanjiao Depression[J]. Chemical
Engineering Management, 2023(15): 70-73.
[24] DENG Q J ,HU MY , HU Z J ,et al.Sedimentary
characteristics of shallow-water delta distributary channel
sand bodies:a case from Ⅱ-ⅠFormation of Fuyu oil
layer in the Sanzhao Depression,Songliao Basin[J].Oil &
Gas Geology, 2015.
[25] WANG B Q , XU W F , LIU Z L .DIAGENESIS OF
RESERVIORS IN FUYU AND YANGDACHENGZI OF
SANZHAO REGION[J].Oil & Gas Geology, 2001,
22(1):82-87.
[26] 贾承造,邹才能,李建忠,等.2012.中国致密油评价标
准、主要类型、基本特征及资源前景[J].石油学
报,33(3):343-350.
JIA C Z, ZOU,C N, LI J Z, et al. Evaluation Criteria, Main
Types, Basic Characteristics, and Resource Outlook of
Tight Oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):
343-350.
[27] TANG Z., ZHAO J., WANG T. Evaluation and key
technology application of" sweet area" of tight oil in south
Songliao Basin. Natural Gas Geoscience, 2019,30(8),
1114-1124.
[28] LIU T , LIU Z B, ZHANG K J, et al. Research on the
generation and annotation method of thin section images
of tight oil reservoir based on deep learning[J]. Scientific
Reports,2024,14(1).
[29] 李盛谦, 曾溅辉, 刘亚洲, 等.东海盆地西湖凹陷孔雀亭
地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性
油气藏, 2023, 35(05): 49-61.
LI S Q, ZENG J H, LIU Y S, et al. Diagenesis and Pore
Evolution of the Paleogene Pinghu Formation Reservoir in
the Xihu Sag, East China Sea Basin[J]. Lithologic Oil and
Gas Reservoirs, 2023, 35(05): 49-61.
[30] 张强, 李家金, 王毛毛, 等.基于改进主成分分析法的测
井曲线岩性分层技术[J]. 吉林大学学报(地球科学版),
2022, 52(04): 1369-1376.
ZHANG Q, LI J J, WANG M M, et al. Lithological
Layering Technology of Logging Curves Based on
Improved Principal Component Analysis[J]. Journal of
Jilin University (Earth Science Edition), 2022, 52(04):
1369-1376.
[31] ZHANG J , AMBROSE W , XIE W .Applying
convolutional neural networks to identify lithofacies of
large-n cores from the Permian Basin and Gulf of Mexico:
The importance of the quantity and quality of training
data[J].Marine and Petroleum Geology, 2021,
133:105307.
[32] JANANI R, VIJAYARANI S. Automatic text
classification using machine learning and optimization
algorithms[J/OL]. Soft Computing, 2021: 1129-1145.
[33] ANTARIKSA G., MUAMMAR R., LEE J. Performance
evaluation of machine learning-based classification with
rock-physics analysis of geological lithofacies in Tarakan
Basin, Indonesia[J/OL]. Journal of Petroleum Science and
Engineering, 2022: 109250.
[34] PEREIRA N. Pereira ASLNet: ASL letter recognition with
YOLOX taking Mean Average Precision and Inference
Time considerations[C]//2022 2nd International
Conference on Artificial Intelligence and Signal
Processing (AISP), Vijayawada, India. 2022.
DOI:10.1109/aisp53593.2022.9760665.
|