[1] FANG H Y, WU F, ZHAO Z, et al.Community-based question answering via heterogeneous social network learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2016:122-128. [2] AMANCIO L, DORNELES C F, DALIP D H.Recency and quality-based ranking question in CQAs:a stack overflow case study[J].Information Processing&Management, 2021, 58(4):52-63. [3] 朱宗奎, 张鹏举, 贾永辉, 等.基于多标签策略的中文知识图谱问答系统研究[J].计算机工程, 2021, 47(2):103-110, 117. ZHU Z K, ZHANG P J, JIA Y H, et al.Study of Chinese knowledge base question answering system based on multi-label strategy[J].Computer Engineering, 2021, 47(2):103-110, 117.(in Chinese) [4] YU L, HERMANN K, BLUNSOM P, et al.Deep learning for answer sentence selection[EB/OL].[2021-09-03].https://www.semanticscholar.org/paper/Deep-Learning-for-Answer-Sentence-Selection-Yu-Hermann/4cfad7889dc12825309325cd4b4f3febed424e36. [5] WANG D, NYBERG E.A long short-term memory model for answer sentence selection in question answering[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2015:707-712. [6] HE H, GIMPEL K, LIN J.Multi-perspective sentence similarity modeling with convolutional neural networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2015:1576-1586. [7] HU B, LU Z, LI H, et al.Convolutional neural network architectures for matching natural language sentences[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2014:2042-2050. [8] WANG S, JIANG J.A compare-aggregate model for matching text sequences[EB/OL].[2021-09-03].https://www.zhuanzhi.ai/paper/6ab06cb2717944c4a925e7b116875e15. [9] BAHDANAU D, CHO K H, BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2021-09-03].https://www.zhuanzhi.ai/paper/6ab06cb2717944c4a925e7b116875e15. [10] SUTSKEVER I, VINYALS O, LE Q V.Sequence to sequence learning with neural networks[EB/OL].[2021-09-03].http://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43155.pdf. [11] HERMANN K M, KOCISKY T, GREFENSTETTE E, et al.Teaching machines to read and comprehend[J].Advances in Neural Information Processing Systems, 2015, 28:1693-1701. [12] ROCKTÄSCHEL T, GREFENSTETTE E, HERMANN K, et al.Reasoning about entailment with neural attention[EB/OL].[2021-09-03].https://www.semanticscholar.org/paper/Reasoning-about-Entailment-with-Neural-Attention-Rockt%C3%A4schel-Grefenstette/2846e83d405cbe3bf2f0f3b5f635dd8b3c680c45. [13] VASIN P, ROTH D, YIH W T.Mapping dependencies trees:an application to question answering[EB/OL].[2021-09-03].https://www.docin.com/p-957607371.html. [14] YIH W T, CHANG M W, MEEK C, et al.Question answering using enhanced lexical semantic models[EB/OL].[2021-09-03].https://www.semanticscholar.org/paper/Question-Answering-Using-Enhanced-Lexical-Semantic-Yih-Chang/f1aa6df7f18f9cb7d6b6c5c190aeade47b450656. [15] SHAH C, POMERANTZ J.Evaluating and predicting answer quality in community QA[C]//Proceedings of the 33rd International Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2010:411-418. [16] TRAN N K, NIEDEREÉE C.Multihop attention networks for question answer matching[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York, USA:ACM Press, 2018:325-334. [17] 唐竑轩, 武恺莉, 朱朦朦, 等.基于双向注意力机制的多文档神经阅读理解[J].计算机工程, 2020, 46(12):43-51. TANG H X, WU K L, ZHU M M, et al.Multi-document neural reading comprehension based on bi-directional attention mechanism[J].Computer Engineering, 2020, 46(12):43-51.(in Chinese) [18] YOON S, DERNONCOURT F, KIM D S, et al.A compare-aggregate model with latent clustering for answer selection[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:2093-2096. [19] LI L S, ZHOU A Q, ZHANG B B, et al.Multiple fragment-level interactive networks for answer selection[J].Neurocomputing, 2020, 402:80-88. [20] GAO H, HU M, CHENG R, et al.Hierarchical ranking for answer selection[EB/OL].[2021-09-03].https://arxiv.org/abs/2102.00677. [21] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2021-09-03].https://www.semanticscholar.org/paper/Efficient-Estimation-of-Word-Representations-in-Mikolov-Chen/330da625c15427c6e42ccfa3b747fb29e5835bf0. [22] PENNINGTON J, SOCHER R, MANNING C.Glove:global vectors for word representation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2014:1532-1543. [23] JACOB D, CHANG M W, KENTON L, et al.BERT:pre-training of deep bidirectional transformers for language understanding.[EB/OL].[2021-09-03].https://arxiv.org/abs/1810.04805. [24] PETERS M, NEUMANN M, IYYER M, et al.Deep contextualized word representations[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2018:2227-2237. [25] LASKAR M T R, HUANG X, HOQUE E.Contextualized embeddings based transformer encoder for sentence similarity modeling in answer selection task[EB/OL].[2021-09-03].https://www.researchgate.net/publication/341231839_Contextualized_Embeddings_based_Transformer_Encoder_for_Sentence_Similarity_Modeling_in_Answer_Selection_Task. [26] WANG M, SMITH N A, MITAMURA T.What is the Jeopardy model?a quasi-synchronous grammar for QA[EB/OL].[2021-09-03].https://aclanthology.org/D07-1003.pdf. [27] YANG Y, YIH W T, MEEK C.WikiQA:a challenge dataset for open-domain question answering[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2015:2013-2018. |