1 |
ZHAO J, GONG M, LIU J, et al. Deep learning to classify difference image for image change detection[C]//Proceedings of 2014 International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2014: 411-417.
|
2 |
DEMIR B , BOVOLO F , BRUZZONE L . Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51 (1): 300- 312.
URL
|
3 |
LIN Y, ZHANG L, WANG N. A new time series change detection method for landsat land use and land cover change[C]//Proceedings of 201910th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Washington D. C., USA: IEEE Press, 2019: 1-4.
|
4 |
季顺平, 田思琦, 张驰. 利用全空洞卷积神经元网络进行城市土地覆盖分类与变化检测. 武汉大学学报(信息科学版), 2020, 45 (2): 233- 241.
|
|
JI S P , TIAN S Q , ZHANG C . Urban land cover classfication and change detection using fully atrous convolutional neural network. Geomatics and Information Science of Wuhan University, 2020, 45 (2): 233- 241.
|
5 |
GÄRTNER P , FÖRSTER M , KURBAN A , et al. Object based change detection of Central Asian Tugai vegetation with very high spatial resolution satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2014, 31, 110- 121.
doi: 10.1016/j.jag.2014.03.004
|
6 |
李成龙, 张景发. 基于主成分分析的遥感震害变化检测方法与应用. 地震, 2013, 33 (2): 103- 108.
|
|
LI C L , ZHANG J F . Method and application of earthquake damage change detection from remote sensing images based on principal component analysis. Earthquake, 2013, 33 (2): 103- 108.
|
7 |
LU P , QIN Y , LI Z , et al. Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sensing of Environment, 2019, 231, 111235.
doi: 10.1016/j.rse.2019.111235
|
8 |
SINGH A . Change detection in the tropical forest environment of northeastern India using Landsat. Remote Sensing and Tropical Land Management, 1986, 44, 254- 273.
|
9 |
HOWARTH P J , WICKWARE G M . Procedures for change detection using Landsat digital data. International Journal of Remote Sensing, 1981, 2 (3): 277- 291.
doi: 10.1080/01431168108948362
|
10 |
HUANG W , HUANG J , WANG L , et al. Remote sensing image change detection based on change vector analysis of PCA component. Remote Sensing for Natural Resources, 2016, 28 (1): 22- 27.
|
11 |
CHEN J , CHEN X , CUI X , et al. Change vector analysis in posterior probability space: a new method for land cover change detection. IEEE Geoscience and Remote Sensing Letters, 2010, 8 (2): 317- 321.
|
12 |
NIELSEN A A , CONRADSEN K , SIMPSON J J . Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sensing of Environment, 1998, 64 (1): 1- 19.
doi: 10.1016/S0034-4257(97)00162-4
|
13 |
WU C , DU B , ZHANG L . Slow feature analysis for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52 (5): 2858- 2874.
|
14 |
ZHONG P , WANG R . A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (12): 3978- 3988.
doi: 10.1109/TGRS.2007.907109
|
15 |
耿忠. 面向单波段高分辨率遥感影像的人工目标变化检测技术研究. 地理信息世界, 2007, 5 (6): 36- 41.
|
|
GENG Z . Research on artificial object changing detection techniques of single-band oriented high resolution remote sensing image. Geomatics World, 2007, 5 (6): 36- 41.
|
16 |
SHI W , ZHANG M , ZHANG R , et al. Change detection based on artificial intelligence: state-of-the-art and challenges. Remote Sensing, 2020, 12 (10): 1688.
doi: 10.3390/rs12101688
|
17 |
ALCANTARILLA P F , STENT S , ROS G , et al. Street-view change detection with deconvolutional networks. Autonomous Robots, 2018, 42, 1301- 1322.
URL
|
18 |
PENG D , ZHANG Y , GUAN H . End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sensing, 2019, 11 (11): 1382.
URL
|
19 |
ZHANG X , YUE Y , GAO W , et al. DifUnet++: a satellite images change detection network based on UNet++ and differential pyramid. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 8006605.
|
20 |
DAUDT R C, LE SAUX B, BOULCH A. Fully convolutional Siamese networks for change detection[C]// Proceedings of 201825th IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2018: 4063-4067.
|
21 |
MOU L , BRUZZONE L , ZHU X X . Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57 (2): 924- 935.
URL
|
22 |
HAN C , Wu C , GUO H , et al. HANet: a hierarchical attention network for change detection with bitemporal very-high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3867- 3878.
|
23 |
GUO E, FU X, ZHU J, et al. Learning to measure change: fully convolutional Siamese metric networks for scene change detection[EB/OL]. (2018-10-22)[2023-09-06]. https://arxiv.org/abs/1810.09111.
|
24 |
ZHANG C , YUE P , TAPETE D , et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 183- 200.
|
25 |
FANG S , LI K , SHAO J , et al. SNUNet-CD: a densely connected Siamese network for change detection of VHR images. IEEE Geoscience and Remote Sensing Letters, 2021, 19, 8007805.
URL
|
26 |
CHEN H , SHI Z . A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 2020, 12 (10): 1662.
|
27 |
GUO Q , ZHANG J , ZHU S , et al. Deep multiscale Siamese network with parallel convolutional structure and self-attention for change detection. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5406512.
|
28 |
|
29 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2023-09-06]. https://arxiv.org/abs/2010.11929.
|
30 |
CAO H, WANG Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12)[2023-09-06]. https://arxiv.org/abs/2105.05537.
|
31 |
CHEN H , QI Z , SHI Z . Remote sensing image change detection with transformers. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 5607514.
|
32 |
BANDARA W G C, PATEL V M. A transformer-based Siamese network for change detection[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2022: 207-210.
|
33 |
RONNEBERGER O, FISCHER P, BROX T. U-net: cconvolutional networks for biomedical image segmentation[C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
34 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
35 |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin, Germany: Springer, 2018: 3-11.
|
36 |
ZHOU Z , SIDDIQUEE M M R , TAJBAKHSH N , et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2019, 39 (6): 1856- 1867.
URL
|
37 |
JATURAPITPORNCHAI R , MATSUOKA M , KANEMOTO N , et al. Newly built construction detection in SAR images using deep learning. Remote Sensing, 2019, 11 (12): 1444.
URL
|
38 |
PAPADOMANOLAKI M, VERMA S, VAKALOPOULOU M, et al. Detecting urban changes with recurrent neural networks from multitemporal Sentinel-2 data[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2019: 214-217.
|
39 |
LI H , ZHU F , ZHENG X , et al. MSCDUNet: a deep learning framework for built-up area change detection integrating multispectral, SAR, and VHR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5163- 5176.
|
40 |
JIANG K, LIU J, LIU F, et al. Dual UNet: a novel Siamese network for change detection with cascade differential fusion[C]//Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium. Washington D. C., USA: IEEE Press, 2022: 1428-1431.
|
41 |
周豫阳, 王明常, 王凤艳, 等. 改进U-Net的高分辨率遥感影像建筑区变化检测方法. 世界地质, 2023, 42 (1): 159- 167.
|
|
ZHOU Y Y , WANG M C , WANG F Y , et al. Detection method of high-resolution remote sensing building area change based on improved U-Net. Global Geology, 2023, 42 (1): 159- 167.
|
42 |
梁燕, 易春霞, 王光宇. 基于编解码网络UNet3+的遥感影像建筑变化检测. 计算机学报, 2023, 46 (8): 1720- 1733.
|
|
LIANG Y , YI C X , WANG G Y . Detection of building change in remote sensing image based on encoder-decoder network UNet3+. Chinese Journal of Computers, 2023, 46 (8): 1720- 1733.
|
43 |
LEI T , ZHANG Y , LÜ Z , et al. Landslide inventory mapping from bitemporal images using deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (6): 982- 986.
|
44 |
CHEN J , YUAN Z , PENG J , et al. DASNet: dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14, 1194- 1206.
URL
|
45 |
LIU R , CHENG Z , ZHANG L , et al. Remote sensing image change detection based on information transmission and attention mechanism. IEEE Access, 2019, 7, 156349- 156359.
URL
|
46 |
DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs[EB/OL]. (2022-03-13)[2023-09-06]. https://arxiv.org/abs/2203.06717.
|
47 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
48 |
DING X, GUO Y, DING G, et al. ACNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1911-1920.
|
49 |
DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13733-13742.
|
50 |
DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10886-10895.
|
51 |
DING X, HAO T, TAN J, et al. ResRep: lossless CNN pruning via decouplingg remembering and forgetting[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 4510-4520.
|
52 |
MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[EB/OL]. (2016-06-15)[2023-09-06]. https://arxiv.org/abs/1606.04797.
|
53 |
JI S , WEI S , LU M . Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57 (1): 574- 586.
URL
|
54 |
逄涛, 张学敏, 姚亚洲, 等. 基于特征增强的光学遥感图像建筑物变化检测. 计算机工程, 2023, 49 (4): 182- 187.
URL
|
|
PANG T , ZHANG X M , YAO Y Z , et al. Optical remote sensing image building change detection based on feature enhancement. Computer Engineering, 2023, 49 (4): 182- 187.
URL
|
55 |
BAI B , FU W , LU T , et al. Edge-guided recurrent convolutional neural network for multitemporal remote sensing image building change detection. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 5610613.
|
56 |
MO J , SEONG S , OH J , et al. SAUNet3+ CD: a Siamese-attentive UNet3+ for change detection in remote sensing images. IEEE Access, 2022, 10, 101434- 101444.
|
57 |
LIU Y , PANG C , ZHAN Z , et al. Building change detection for remote sensing images using a dual-task constrained deep Siamese convolutional network model. IEEE Geoscience and Remote Sensing Letters, 2020, 18 (5): 811- 815.
|
58 |
HAN C, WU C, DU B. HCGMNet: a hierarchical change guiding map network for change detection[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium, Washington D. C., USA: IEEE Press, 2023: 207-210.
|