1 |
EZUGWU A E , IKOTUN A M , OYELADE O O , et al. A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 2022, 110, 104743.
doi: 10.1016/j.engappai.2022.104743
|
2 |
张和平, 李俊武. 基于模糊c均值聚类算法的控制图模式识别. 工业工程, 2021, 24 (5): 108- 116.
|
|
ZHANG H P , LI J W . Recognition of control chart patterns using fuzzy c-means algorithm. Industrial Engineering Journal, 2021, 24 (5): 108- 116.
|
3 |
MADEIRA S C , OLIVEIRA A L . Bi-clustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1 (1): 24- 45.
doi: 10.1109/TCBB.2004.2
|
4 |
RAFAEL C G , RICHARD E W . Digital image processing. Upper Saddle River, USA: Prentice Hall, 2008.
|
5 |
LIU J , PHAM T D , YAN H , et al. Fuzzy mixed-prototype clustering algorithm for microarray data analysis. Neurocomputing, 2018, 276, 42- 54.
doi: 10.1016/j.neucom.2017.06.083
|
6 |
XU R , WUNSCH D . Survey of clustering algorithms. IEEE Transactions on Neural Networks, 2005, 16 (3): 645- 678.
doi: 10.1109/TNN.2005.845141
|
7 |
MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. [S. 1. ]: University of California Press, 1967: 281-297.
|
8 |
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical, Society Series B: Statistical Methodology, 1977, 39 (1): 1- 22.
doi: 10.1111/j.2517-6161.1977.tb01600.x
|
9 |
ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 1996: 226-231.
|
10 |
RODRIGUEZ A , LAIO A . Clustering by fast search and find of density peaks. Science, 2014, 344 (6191): 1492- 1496.
doi: 10.1126/science.1242072
|
11 |
位雅, 张正军, 何凯琳, 等. 基于相对密度的密度峰值聚类算法. 计算机工程, 2023, 49 (6): 53- 61.
doi: 10.19678/j.issn.1000-3428.0064368
|
|
WEI Y , ZHANG Z J , HE K L , et al. Density peak clustering algorithm based on relative density. Computer Engineering, 2023, 49 (6): 53- 61.
doi: 10.19678/j.issn.1000-3428.0064368
|
12 |
LI F X , ZHOU M , LI S , et al. A new density peak clustering algorithm based on cluster fusion strategy. IEEE Access, 2022, 10, 98034- 98047.
doi: 10.1109/ACCESS.2022.3205742
|
13 |
王芙银, 张德生, 肖燕婷. 基于加权共享近邻与累加序列的密度峰值算法. 计算机工程, 2022, 48 (4): 61- 69.
doi: 10.19678/j.issn.1000-3428.0060648
|
|
WANG F Y , ZHANG D S , XIAO Y T . Density peak algorithm based on weighted shared nearest neighbor and accumulated sequence. Computer Engineering, 2022, 48 (4): 61- 69.
doi: 10.19678/j.issn.1000-3428.0060648
|
14 |
XU T F , JIANG J H . A graph adaptive density peaks clustering algorithm for automatic centroid selection and effective aggregation. Expert Systems with Applications, 2022, 195, 116539.
doi: 10.1016/j.eswa.2022.116539
|
15 |
CHEN D , DU T , ZHOU J , et al. A domain density peak clustering algorithm based on natural neighbor. Intelligent Data Analysis, 2023, 27 (2): 443- 462.
doi: 10.3233/IDA-216541
|
16 |
ZHOU Z , SI G Q , SUN H D , et al. A robust clustering algorithm based on the identification of core points and KNN kernel density estimation. Expert Systems with Applications, 2022, 195, 116573.
doi: 10.1016/j.eswa.2022.116573
|
17 |
HOU J, PELILLO M. A new density kernel in density peak based clustering[C]//Proceedings of the 23rd International Conference on Pattern Recognition (ICPR). Washington D.C., USA: IEEE Press, 2016: 468-473.
|
18 |
DU H , HAO Y T , WANG Z H . An improved density peaks clustering algorithm by automatic determination of cluster centres. Connection Science, 2022, 34 (1): 857- 873.
doi: 10.1080/09540091.2021.2012422
|
19 |
张凤荔, 周洪川, 张俊娇, 等. 基于改进凝聚层次聚类的协议分类算法. 计算机工程与科学, 2017, 39 (4): 796- 803.
|
|
ZHANG F L , ZHOU H C , ZHANG J J , et al. A protocol classification algorithm based on improved AGNES. Computer Engineering&Science, 2017, 39 (4): 796- 803.
|
20 |
MISHRA G , MOHANTY S K . A fast hybrid clustering technique based on local nearest neighbor using minimum spanning tree. Expert Systems with Application, 2019, 132, 28- 43.
doi: 10.1016/j.eswa.2019.04.048
|
21 |
WANG Y Z , QIAN J X , HASSAN M , et al. Density peak clustering algorithms: a review on the decade 2014-2023. Expert Systems with Applications, 2023, 238, 121860.
|
22 |
VINH N X, EPPS J, BAILEY J. Information theoretic measures for clustering comparison[C]//Proceedings of International Conference on Machine Learning. New York, USA: ACM Press, 2010: 2837-2854.
|
23 |
NGUYEN T P Q , KUO R J . Partition-and-merge based fuzzy genetic clustering algorithm for categorical data. Applied Soft Computing, 2019, 75, 254- 264.
|
24 |
FOWLKES E B , MALLOWS C L . A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 1983, 78 (383): 553- 569.
|