Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2026, Vol. 52 ›› Issue (2): 372-382. doi: 10.19678/j.issn.1000-3428.0069767

• Large Language Models and Generative Artificial Intelligence • Previous Articles    

Machine Translation with Large Language Models Based on Correction Mechanism of Error-Prone Words in Translations

LI Bo, JI Baijun, DUAN Xiangyu   

  1. School of Computer Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
  • Received:2024-04-19 Revised:2024-09-11 Published:2026-02-04

基于译文易错词纠正机制的大语言模型机器翻译

李博, 季佰军, 段湘煜   

  1. 苏州大学计算机科学与技术学院, 江苏 苏州 215006
  • 作者简介:李博(CCF学生会员),男,硕士研究生,主研方向为机器翻译、自然语言处理;季佰军,博士研究生;段湘煜(通信作者),教授。E-mail:xiangyuduan@suda.edu.cn
  • 基金资助:
    国家自然科学基金(62276179)。

Abstract: Large Language Models (LLMs) demonstrate a certain level of performance in machine translation tasks. These models can generate translations upon receiving a translation prompt. However, owing to limitations imposed by the quality of pre-training corpora and the distribution of languages, translations generated by LLMs still show quality issues such as mistranslations, omissions, hallucinations, and off-target translations. To mitigate the issue of low-quality translations generated by LLMs, this paper proposes a machine translation method using LLMs based on the correction mechanism of error-prone words in translations. Initially, error-prone words for a particular language direction are defined using model and reference translations from the original training set. Subsequently, a dataset for correcting these error-prone words is constructed based on the error-prone words in the model translations and their corresponding corrections. The correction model is then obtained by fine-tuning a small pre-trained model using the correction dataset. During the inference phase, the correction model is employed to rectify error-prone words in the translations generated by the LLM; subsequently, the LLM performs autoregressive decoding to produce a higher-quality translation. Experiments were conducted using the Llama2-7B model across six language directions (Chinese↔English, German↔English, and Russian↔English) on the WMT2022 test set. The results indicate that the average Crosslingual Optimized Metric for Evaluation of Translation (COMET) and SacreBilingual Evaluation Understudy (BLEU) scores for the X-English translation direction improved by 0.018 7 and 1.26 points, respectively, while those for the English-X translation direction improved by 0.087 9 and 7.67 points, respectively, when compared to translations without correction. These experiments substantiate the effectiveness of the correction mechanism of error-prone words in enhancing the quality of text translation by LLMs.

Key words: machine translation, Large Language Model (LLM), error-prone word, correction mechanism, off-target translation

摘要: 大语言模型在机器翻译任务中已经展现出一定水平,通过提供翻译提示,模型能够生成译文。然而,受预训练语料质量和语言分布的限制,大语言模型生成的译文仍存在一些低质量翻译问题,如错译、漏译、幻觉和脱靶翻译等。为了减少大语言模型的低质量翻译,提出基于译文易错词纠正机制的大语言模型机器翻译方法。首先使用原始训练集的模型译文和参考译文定义大语言模型在特定语向的译文易错词,然后根据译文中的易错词及其纠正词构建易错词纠正数据集,利用易错词纠正数据集微调另外一个小型预训练模型得到纠正模型。在推理阶段,使用纠正模型对大语言模型译文中的易错词进行纠正,纠正后再由大语言模型完成自回归解码,最终得到更高质量的译文。实验采用Llama2-7B模型,在WMT2022测试集的中↔英、德↔英和俄↔英6个语向中进行了验证。结果显示,与未经纠正的译文相比,X-英翻译语向的平均COMET(Crosslingual Optimized Metric for Evaluation of Translation)和平均SacreBLEU(Bilingual Evaluation Understudy)分别提高了0.018 7和1.26分,英-X语向的平均COMET和平均SacreBLEU分别提高了0.087 9和7.67分。实验证明了易错词纠正机制能够有效提高文本翻译质量。

关键词: 机器翻译, 大语言模型, 易错词, 纠正机制, 脱靶翻译

CLC Number: