[1] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Proceedings of Conference on Neural Information Processing Systems. Berlin, Germany: Springer, 2020: 1-10. [2] KARPUKHIN V, O AGˇG UZ B, MIN S, et al. Dense passage retrieval for open-domain question answering[EB/OL].[2024-07-27]. https://arxiv.org/abs/2004.04906. [3] IZACARD G, LEWIS P, LOMELI M, et al. Atlas: few-shot learning with retrieval augmented language models[J]. Journal of Machine Learning Research, 2023, 24(251): 1-43. [4] YAO J Y, NING K P, LIU Z H, et al. LLM lies: hallucinations are not bugs, but features as adversarial examples[EB/OL].[2024-07-27]. https://arxiv.org/abs/2310.01469. [5] BANG Y, CAHYAWIJAYA S, LEE N, et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity[EB/OL].[2024-07-27]. https://arxiv.org/abs/2302.04023. [6] ASAI A, WU Z, WANG Y, et al. Self-RAG: learning to retrieve, generate, and critique through self-reflection[C]//Proceedings of the 12th International Conference on Learning Representations. Berlin, Germany: Springer, 2024: 1-10. [7] YAN S Q, GU J C, ZHU Y, et al. Corrective retrieval augmented generation[EB/OL].[2024-07-27]. https://arxiv.org/abs/2401.15884. [8] JEONG S, BAEK J, CHO S, et al. Adaptive-RAG: learning to adapt retrieval-augmented large language models through question complexity[C]//Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Stroudsburg, USA: ACL, 2024: 7036-7050. [9] LIU Y M, PENG X Y, ZHANG X H, et al. RA-ISF: learning to answer and understand from retrieval augmentation via iterative self-feedback[EB/OL].[2024-07-27]. https://arxiv.org/abs/2403.06840. [10] 张峰, 杨晓艺, 刘奕湘. 电力智能问答平台架构的研究与设计[J]. 能源与环保, 2017, 39(7): 193-195. ZHANG F, YANG X Y, LIU Y X. Research and design of power intelligent question-answering platform architecture[J]. Energy and Environmental Protection, 2017, 39(7): 193-195. (in Chinese) [11] 周帆, 叶健辉, 肖林朋, 等. 基于知识图谱的电网模型本体智能问答系统研究[J]. 中国科技信息, 2019, 31(16): 85-86. ZHOU F, YE J H, XIAO L P, et al. Research on intelligent question-answering system of power grid model ontology based on knowledge graph[J]. China Science and Technology Information, 2019, 31(16): 85-86. (in Chinese) [12] 覃祥坤. 一种电力图谱问答系统设计与实现[D]. 北京:中国科学院大学人工智能学院, 2020. QIN X K. Design and implementation of a power graph question answering system[D]. Beijing: School of Artificial Intelligence, University of Chinese Academy of Sciences, 2020. (in Chinese) [13] ZHANG Q, JIA Q Y, WANG Y H. Question answering based assisted decision for electric power fault diagnosis[C]//Proceedings of the IEEE 5th International Conference on Cloud Computing and Big Data Analytics. Chengdu, China: IEEE Press, 2020: 194-198. [14] MENG F Q, WANG W H, WANG J D. Research on short text similarity calculation method for power intelligent question answering[C]//Proceedings of the 13th International Conference on Computational Intelligence and Communication Networks. Lima, Peru: IEEE Press, 2021: 91-95. [15] LI W Q, QI X M, ZHAO Q, et al. Knowledge graph-based credibility evaluation method for electric grid large language model knowledge question-answering[C]//Proceedings of the 7th International Conference on Electronic Information Technology and Computer Engineering. New York, USA: ACM, 2023: 754-759. [16] XIN R, ZHANG P F, CHEN X, et al. Knowledge graph question-answering based on link reasoning for electrical equipment[C]//Proceedings of the 2024 International Conference on Power Electronics and Artificial Intelligence. New York, USA: ACM, 2024: 594-600. [17] ZHAO J X, MA Z C, ZHAO H, et al. Self-Consistency, Extract and Rectify: knowledge graph enhance large language model for electric power question answering[C]//Advanced Intelligent Computing Technology and Applications. Singapore: Springer Nature Singapore, 2024: 493-504. [18] HUANG C H, LI S Y, LIU R H, et al. Large foundation models for power systems[EB/OL].[2024-07-27]. https://arxiv.org/abs/2312.07044. [19] CHENG Y H, ZHAO H, ZHOU X Y, et al. A large language model for advanced power dispatch[EB/OL].[2024-07-27]. https://arxiv.org/abs/2408.03847. [20] MAJUMDER S, DONG L, DOUDI F, et al. Exploring the capabilities and limitations of large language models in the electric energy sector[J]. Joule, 2024, 8(6): 1544-1549. [21] RUAN J Q, LIANG G Q, ZHAO H, et al. Applying large language models to power systems: potential security threats[J]. IEEE Transactions on Smart Grid, 2024, 15(3): 3333-3336. [22] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL].[2024-07-27]. https://arxiv.org/abs/2106.09685. [23] ZHANG T J, PATIL S G, JAIN N, et al. RAFT: adapting language model to domain specific RAG[EB/OL].[2024-07-27]. https://arxiv.org/abs/2403.10131. [24] CUCONASU F, TRAPPOLINI G, SICILIANO F, et al. The power of noise: redefining retrieval for RAG systems[EB/OL].[2024-07-27]. https://arxiv.org/abs/2401.14887. [25] DMONTE A, ORUCHE R, ZAMPIERI M, et al. Claim verification in the age of large language models: a survey[EB/OL].[2024-07-27]. https://arxiv.org/abs/2408.14317. |