×
模态框(Modal)标题
在这里添加一些文本
Close
Close
Submit
Cancel
Confirm
×
模态框(Modal)标题
×
Search
E-mail
RSS
Author Login
Chief Editor Login
Reviewer Login
Editor Login
Remote Office
Toggle navigation
Computer Engineering
Home
About Journal
Editorial Office
Journal Profile
Indexed-in & Awards
Subscription
Journal Online
Mobile Reading App for iPad
Just Accepted
Current Issue
Archive
Most Read
Most Downloaded
Most Cited
Email Alert
RSS
Author Guide
Guidelines
Frequently Asked Questions
Editorial Board
Editor-in-Chief
Editorial Board
Policies&Ethics
Open Access Statement
Publishing Ethics
Academic Misconduct Process
Peer Review
Download
Contact Us
中文
Author Login
Chief Editor Login
Reviewer Login
Editor Login
Remote Office
×
Quick Search
f
针对传统协同过滤算法无法及时反映用户兴趣变化的情况,将人脑的记忆和遗忘特性引入到个性化推荐中,提出基于记忆效应的协同过滤推荐算法。利用短时记忆体现用户近期兴趣变化,应用长时记忆强调用户早期兴趣的重要性,给出将短时记忆和长时记忆相结合的调和记忆,使推荐系统可以自适应地跟踪用户兴趣变化。实验结果表明,与CF算法、SCF算法和AUICF算法相比,该算法的推荐精度更高、收敛速度更快。
YANG Fu-Ping, WANG Hong-Guo, DONG Shu-Xia, DIAO Hua-Chen
Computer Engineering . 2012, (
23
): 63 -66 . DOI: 10.3969/j.issn.1000-3428.2012.23.015