[1] WANG Guoyin, ZHANG Qinghua, HU Jun. An overview
of granular computing [J]. Journal of CAAI Transactions
on Intelligent Systems, 2007, 12(6):8-26.
王国胤,张清华,胡军.计算机综述[J].智能系统学
报,2007,12(6):8-26.
[2] MIAO Duoqian, WANG Guoyin, LIU Qing. Granular
computing: past, present and future [M]. Science Press,
2007:7-22.
苗夺谦,王国胤,刘清.粒计算:过去、现在与展望[M].科学
出版社,2007:7-22.
[3] ZHANG Fengwang. Application of SVM based on
information granulation in securities time series
analysis[D]. Kunming: Kunming University of Science
and Technology, 2014.
张丰旺. 基于信息粒化的 SVM 在证券时间序列分析中
的应用[D]. 昆明:昆明理工大学, 2014.
[4] Pedrycz W, Al-Hmouz R, Morfeq A, et al. The Design of
Free Structure Granular Mappings: The Use of the
Principle of Justifiable Granularity [J]. IEEE Transactions
on Cybernetics, 2013, 43(6):2105.
[5] ZHU X, PEDRYCZ W, LI Z. Granular description of data:
building information granules with the aid of the principle
of justifiable granularity [C]// IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE). IEEE,
Vancouver, BC, 2016, pp. 969-976.
[6] AL-HMOUZ R, PEDRYCZ W, BALAMASH A, et al.
From data to granular data and granular classifiers [C]//
IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE, Beijing, 2014, pp. 432-438.
[7] GACEK A, PEDRYCZ W. Clustering granular data and
their characterization with information granules of higher
type [J], Fuzzy Systems IEEE Transactions on, 2015,
23(4):850-860.
[8] EFFATI S, SADOGHI H, YAZDI A J. Fuzzy clustering
algorithm for fuzzy data based on α–cuts [M]. IOS Press,
2013: 511–519.
[9] PETER G, LINGRAS P. Rough sets: selected methods and
applications in management and engineering [C]// London:
Springer Publishing Company, 2012: 23-37.
[10] HU Q, YU D. An improved clustering algorithm for
information granulation [J]. Lecture Notes in Computer
Science, 2005(8), 3603: 494–504.
[11] HWANG C, RHEE C H. Uncertain Fuzzy Clustering:
Interval Type-2 Fuzzy Approach to C-Means [J]. IEEE
Transactions on Fuzzy Systems, 2007, 15(1): 107-120.
[12] YU L, XIAO J, ZHOU C. Robust interval type-2
possibilistic c-Means clustering [J]. Control and Decision,
2009, 24(4): 503-507.
[13] RUBIO E, CASTILLO O, MELIN P. Interval type-2 fuzzy
system design based on the interval type-2 fuzzy C-Means
algorithm [C]// Berlin: Springer International Publishing.
2016, 335: 133-146.
[14] LU Ruiqiang. Rough clustering and granulation analysis
in uncertain information and ITS application [D]. Nanjing:
Nanjing University of Finance & Economics, 2018:42-52.
逯瑞强. 不确定信息的粗糙聚类与粒化分析及应用[D]
南京:南京财经大学. 2018:42-52
[15] PEDRYCZ W. The principle of justifiable granularity and
an optimization of information granularity allocation as
fundamentals of granular computing [J]. Journal ofInformation Processing Systems, 2011, 7(3):397-412.
[16] PEDRYCZ W, SUCCI G, SILLITTI A, et al. Data
description: a general framework of information granules
[J]. Knowledge-Based Systems, 2015, 80:98-108.
[17] ZHONG C, PEDRYCZ W, WANG D, et al. Granular data
imputation: a framework of Granular Computing [J].
Applied Soft Computing, 2016, 46:307-316.
[18] WANG D, PEDRYCZ W, LI Z. Design of granular
interval-valued information granules with the use of the
principle of justifiable granularity and their applications to
system modeling of higher type [J]. Soft Computing, 2016,
20(6): 2119-2134.
[19] SHEN Y, PEDRYCZ W, WANG X. Clustering
Homogeneous granular data: formation and evaluation [J].
IEEE Transactions on Cybernetics, 2019,
49(4):1391-1402.
[20] WANG D, PEDRYCZ W, LI Z. Granular Data aggregation:
an adaptive principle of the justifiable granularity
approach [J]. IEEE Transactions on Cybernetics, 2018:
1-10.
[21] PEDRYCZ W, WANG X. Designing fuzzy sets with the
use of the parametric principle of justifiable granularity [J].
IEEE Transactions on Fuzzy Systems, 2016,
24(2):489-496.
[22] LIU S, PEDRYCZ W, GACEK A, et al. A two-phase
method of forming a granular representation of signals [J].
Signal Processing, 2017, 141:1-15.
[23] WANG X, PEDRYCZ W, GACEK A, et al. From numeric
data to information granules: a design through clustering
and the principle of justifiable granularity [J].
Knowledge-Based Systems, 2016:100-113.24.
[24] FU C, LU W, PEDRYCZ W, et al. Fuzzy granular
classification based on the principle of justifiable
granularity [J]. Knowledge Based Systems, 2019: 89-101.
[25] PEDRYCZ W, HOMENDA W. Building the fundamentals
of granular computing: A principle of justifiable
granularity [J]. Applied Soft Computing, 2013,
13(10):4209-4218.
|