1 |
|
2 |
TAO J R, LIN J S, ZHANG S Z, et al. MVAN: multi-view attention networks for real money trading detection in online games[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 2536-2546.
|
3 |
BHATIA S, HOOI B, YOON M, et al. Midas: microcluster-based detector of anomalies in edge streams. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3242- 3249.
doi: 10.1609/aaai.v34i04.5724
|
4 |
FAN H Y, ZHANG F B, LI Z Y. Anomalydae: dual autoencoder for anomaly detection on attributed networks[C]//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 5685-5689.
|
5 |
LI Z, ZHAO Y, FU J L. SynC: a copula based framework for generating synthetic data from aggregated sources[C]//Proceedings of International Conference on Data Mining Workshops. Washington D. C., USA: IEEE Press, 2020: 571-578.
|
6 |
FERNANDO T, DENMAN S, AHMEDT-ARISTIZABAL D, et al. Neural memory plasticity for medical anomaly detection. Neural Networks, 2020, 127, 67- 81.
doi: 10.1016/j.neunet.2020.04.011
|
7 |
|
8 |
RAMASWAMY S, RASTOGI R, SHIM K. Efficient algorithms for mining outliers from large data sets[C]//Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2000: 427-438.
|
9 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of 2000 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2000: 93-104.
|
10 |
|
11 |
LIU F T, TING K M, ZHOU Z H. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2008: 413-422.
|
12 |
|
13 |
|
14 |
AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, 2015, 2(1): 1- 18.
|
15 |
|
16 |
LIU Y, LI Z, ZHOU C, et al. Generative adversarial active learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(8): 1517- 1528.
|
17 |
GOODGE A, HOOI B, NG S K, et al. LUNAR: unifying local outlier detection methods via graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(6): 6737- 6745.
doi: 10.1609/aaai.v36i6.20629
|
18 |
PANG G S, SHEN C H, CAO L B, et al. Deep learning for anomaly detection: a review. ACM Computing Surveys, 2021, 54(2): 38.
|
19 |
KRIEGEL H P, SCHUBERT M, ZIMEK A. Angle-based outlier detection in high-dimensional data[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2008: 444-452.
|
20 |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61- 80.
doi: 10.1109/TNN.2008.2005605
|
21 |
|
22 |
LI Z, ZHAO Y, BOTTA N, et al. COPOD: copula-based outlier detection[C]//Proceedings of IEEE International Conference on Data Mining. Washington D. C., USA: IEEE Press, 2020: 1118-1123.
|
23 |
|
24 |
BANDARAGODA T R, TING K M, ALBRECHT D, et al. Isolation-based anomaly detection using nearest-neighbor ensembles. Computational Intelligence, 2018, 34(4): 968- 998.
doi: 10.1111/coin.12156
|
25 |
|
26 |
张仕, 赖会霞, 肖如良, 等. 开放环境多分布特性的局部敏感哈希检索方法. 软件学报, 2022, 33(4): 1200- 1217.
URL
|
|
ZHANG S, LAI H X, XIAO R L, et al. Open environmental locality-sensitive hashing retrieval for multiple distributed characteristics. Journal of Software, 2022, 33(4): 1200- 1217.
URL
|
27 |
PHAM N, PAGH R. A near-linear time approximation algorithm for angle-based outlier detection in high-dimensional data[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2012: 877-885.
|
28 |
余立苹, 李云飞, 朱世行. 基于高维数据流的异常检测算法. 计算机工程, 2018, 44(1): 51- 55.
URL
|
|
YU L P, LI Y F, ZHU S X. Anomaly detection algorithm based on high-dimensional data stream. Computer Engineering, 2018, 44(1): 51- 55.
URL
|
29 |
ZOU H, HASTIE T, TIBSHIRANI R. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 2006, 15(2): 265- 286.
doi: 10.1198/106186006X113430
|
30 |
PEVNÝ T. Loda: lightweight on-line detector of anomalies. Machine Learning, 2016, 102(2): 275- 304.
doi: 10.1007/s10994-015-5521-0
|
31 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
doi: 10.1145/3065386
|
32 |
|
33 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
34 |
|
35 |
DENG A L, HOOI B. Graph neural network-based anomaly detection in multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4027- 4035.
doi: 10.1609/aaai.v35i5.16523
|
36 |
SIPPLE J. Interpretable, multidimensional, multimodal anomaly detection with negative sampling for detection of device failure[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA: ACM Press, 2020: 9016-9025.
|