[1]CHAPELLE O,SCHOLKOPF B,ZIEN A.Semi-supervised learning[J].IEEE Transactions on Neural Networks,2009,20(3):542-546.
[2]LEE D H.Pseudo-label:the simple and efficient semi-supervised learning method for deep neural networks[EB/OL].[2018-02-01].http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf.
[3]RASMUS A,BERGLUND M,HONKALA M,et al.Semi-supervised learning with ladder networks [EB/OL].[2018-02-01].http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks.pdf.
[4]KINGMA D P,MOHAMED S,REZENDE D J,et al.Semi-supervised learning with deep generative models[EB/OL].[2018-02-05].https://arxiv.org/pdf/1406.5298.pdf.
[5]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of Inter-national Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2014:2672-2680.
[6]MAALE L,SNDERBY C K,SNDERBY S K,et al.Auxiliary deep generative models[EB/OL].[2018-02-06].https://arxiv.org/pdf/1602.05473.pdf.
[7]DUMOULIN V,BELGHAZI I,POOLE B,et al.Adver-sarially learned inference[EB/OL].[2018-02-04].https://arxiv.org/pdf/1606.00704.pdf.
[8]SPRINGENBERG J T.Unsupervised and semi-supervised learning with categorical generative adversarial networks[J].Computer Science,2015(6):2321-2330.
[9]SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[C]//Proceedings of NIPS’16.Barcelona,Spain:NIPS,2016:2234-2242.
[10]LI Chongxuan,XU Kun,ZHU Jun,et al.Triple generative adversarial nets[C]//Proceedings of NIPS’17.Barcelona,Spain:NIPS,2017:4091-4101.
[11]王坤峰,苟超,段艳杰,等.生成式对抗网络 GAN的研究进展与展望[J].自动化学报,2017,43(3):321-332.
[12]ARJOVSKY M,BOTTOU L.Towards principled methods for training generative adversarial networks[EB/OL].[2018-01-25].https://leon.bottou.org/publications/pdf/iclr-2017.pdf.
[13]ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein GAN[EB/OL].[2018-02-05].https://arxiv.org/pdf/1701.07875.pdf.
(下转第168页)
(上接第160页)
[14]METZ L,POOLE B,PFAU D,et al.Unrolled generative adversarial networks[EB/OL].[2018-02-07].https://arxiv.org/pdf/1611.02163.pdf.
[15]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[16]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[J].Handbook of Systemic Autoimmune Diseases,2009,1(4):32-33.
[17]BASTIEN F,LAMBLIN P,PASCANU R,et al.Theano:new features and speed improvements[EB/OL].[2018-01-25].http://export.arxiv.org/pdf/1211.5590.
[18]SALIMANS T,KINGMA D P.Weight normalization:a simple reparameterization to accelerate training of deep neural networks[C]//Proceedings of NIPS’16.Barcelona,Spain:NIPS,2016:901-909.
[19]MIYATO T,MAEDA S,KOYAMA M,et al.Distributional smoothing with virtual adversarial training[EB/OL].[2018-01-26].https://arxiv.org/pdf/1507.00677.pdf.
[20]RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2018-02-10].https://arxiv.org/pdf/1511.06434.pdf. |