[1] KOESDWIADY A,SOUA R,KARRAY F,et al.Recent trends in driver safety monitoring systems:state of the art and challenges[J].IEEE Transactions on Vehicular Technology,2017,66(6):4550-4563. [2] LAWOYIN S.Novel technologies for the detection and mitigation of drowsy driving[EB/OL].[2022-03-10] https://www.zhangqiaokeyan.com/open-access_resources_thesis/0100049312789.html. [3] CHAI M.Drowsiness monitoring based on steering wheel status[J].Transportation Research Part D:Transport and Environment,2019,66:95-103. [4] TANGO F,BOTTA M.Real-time detection system of driver distraction using machine learning[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(2):894-905. [5] MIN J,XIONG C,ZHANG Y,et al.Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model[J].Biomedical Signal Processing and Control,2021,69:57-65. [6] ZHANG G Y,ETEMAD A.Capsule attention for multimodal EEG-EOG representation learning with application to driver vigilance estimation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering:a Publication of the IEEE Engineering in Medicine and Biology Society,2021,29:1138-1149. [7] SATTI A T,KIM J,YI E,et al.Microneedle array electrode-based wearable EMG system for detection of driver drowsiness through steering wheel grip[J].Sensors (Basel,Switzerland),2021,21(15):91-102. [8] VIOLA P,JONES M.Robust real-time face detection[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2004,57(2):137-154. [9] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [10] DENG J K,GUO J,VERVERAS E,et al.RetinaFace:single-shot multi-level face localisation in the wild[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:5202-5211. [11] 耿磊,袁菲,肖志涛,等.基于面部行为分析的驾驶员疲劳检测方法[J].计算机工程,2018,44(1):274-279. GENG L,YUAN F,XIAO Z T,et al.Driver fatigue detection method based on facial behavior analysisfull text replacement[J].Computer Engineering,2018,44(1):274-279.(in Chinese) [12] ZHANG Z B,CHEN Y Z,YANG Y Z.Driver fatigue detection system based on machine vision[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation.Washington D.C.,USA:IEEE Press,2008:3979-3984. [13] JI Y Y,WANG S G,ZHAO Y,et al.Fatigue state detection based on multi-index fusion and state recognition network[J].IEEE Access,2019,7:64136-64147. [14] 娄平,杨欣,胡辑伟,等.基于边缘计算的疲劳驾驶检测方法[J].计算机工程,2021,47(7):13-20,29. LOU P,YANG X,HU J W,et al.Fatigue driving detection method based on edge computing[J].Computer Engineering,2021,47(7):13-20,29.(in Chinese) [15] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:7132-7141. [16] WANG Q L,WU B G,ZHU P F,et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:11531-11539. [17] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2020:11534-11542. [18] HAN K,WANG Y H,TIAN Q,et al.GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Seattle.Washington D.C.,USA:IEEE Press,2020:1577-1586. [19] ACıOĞLU A,ERÇELEBI E.Real time eye detection algorithm for PERCLOS calculation[C]//Proceedings of the 24th Signal Processing and Communication Application Conference.Washington D.C.,USA:IEEE Press,2016:1641-1644. [20] SONG F,TAN X,LIU X,et al.Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients[J].Pattern Recognition,2014,47(9):2825-2838. [21] ABTAHI S,OMIDYEGANEH M,SHIRMOHAMMADI S,et al.YawDD:a yawning detection dataset[C]//Proceedings of the 5th ACM Multimedia Systems Conference.New York,USA:ACM,2014:24-28. [22] WENG C H,LAI Y H,LAI S H.Driver drowsiness detection via a hierarchical temporal deep belief network[M]//CHEN C S,LU J W,MA K K.Computer Vision-ACCV 2016 Workshops.Berlin,Germany:Springer,2017:117-133. [23] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [24] HE K M,ZHANG X Y,REN S Q,et al.Identity mappings in deep residual networks[M]//LEIBE B,MATAS J, SEBE N,et al.Computer Vision-ECCV 2016.Berlin,Germany:Springer,2016:630-645. [25] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2022-03-10].https://arxiv.org/abs/1704.04861. [26] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:4510-4520. [27] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:2818-2826. |