作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (5): 310-320. doi: 10.19678/j.issn.1000-3428.0064445

• 开发研究与工程应用 • 上一篇    

基于眼嘴状态识别网络的疲劳驾驶检测

张博熠1, 者甜甜1, 赵新旭2, 刘庆华1, 王家晨3   

  1. 1. 江苏科技大学 计算机学院, 江苏镇江 212000;
    2. 江苏科技大学 电信学院, 江苏镇江 212000;
    3. 江苏科技大学海洋学院, 江苏 镇江 212000
  • 收稿日期:2022-04-12 修回日期:2022-06-08 发布日期:2022-08-22
  • 作者简介:张博熠(1997-),男,硕士研究生,主研方向为计算机视觉、图像处理;者甜甜、赵新旭,硕士研究生;刘庆华(通信作者),教授、博士;王家晨,硕士研究生。
  • 基金资助:
    国家自然科学基金(51008143,52275251);江苏省六大高峰人才项目(XYDXX-117)。

Fatigue Driving Detection Based on Eye and Mouth State Recognition Network

ZHANG Boyi1, ZHE Tiantian1, ZHAO Xinxu2, LIU Qinghua1, WANG Jiachen3   

  1. 1. School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China;
    2. School of Telecommunications, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China;
    3. School of Oceanography, Jiangsu University of Science and Technology, Zhenjiang 212000, Jiangsu, China
  • Received:2022-04-12 Revised:2022-06-08 Published:2022-08-22

摘要: 驾驶员疲劳驾驶是引发交通事故的重要因素,因此对驾驶员的驾驶状态进行精准检测尤为关键,然而现有的疲劳检测方法存在误判率高、鲁棒性低等问题。提出一种结合多特征融合与状态识别网络的疲劳驾驶检测方法,分析驾驶员的疲劳状态,利用优化后的单阶段人脸检测算法RetinaFace获取人脸位置及5个标志定位,根据双眼和嘴角关键点坐标将双眼及嘴部区域分别旋转至水平并截取。对现有数据集进行重新分类,用来训练以Ghost模块为基础的眼嘴状态识别网络(EMSD-Net),并对双眼开合状态及嘴部是否哈欠进行识别。最后,根据眼嘴状态,使用单位时间眼睛闭合的百分比、持续闭眼时间和持续哈欠时间为指标进行疲劳判断,并得出相应的疲劳程度,从而起到更有效的预警效果。在NHTU-DDD、YawDD和CEW数据集基础上构建的新数据集上的实验结果表明,所提方法的疲劳特征识别准确率为95.3%,单帧疲劳检测的平均时间为32.6 ms,具有较低的误判率,且在保证检测准确率基础上,有较高的实时性。

关键词: 疲劳驾驶检测, RetinaFace算法, 状态识别, 多特征融合, Ghost模块

Abstract: Driver fatigue is an important factor leading to traffic accidents,and it is particularly important to accurately detect the driving state of drivers. However,existing fatigue detection methods have the problems of high misjudgment rate and low robustness.To ensure high detection accuracy and improve the real-time performance,a fatigue driving detection method based on multi-index fusion and a state recognition network is proposed to deeply analyze the driver's fatigue state. An optimized single-stage face algorithm called RetinaFace is used to obtain the position of the face and locations of five signs. According to the coordinates of the key points of the eyes and corner of the mouth,the eyes and mouth area are rotated to the horizontal and intercepted,respectively. Existing datasets were reconstructed and classified to train the Eye and Mouth State Discrimination Network (EMSD-Net) based on a ghost module and then identify whether the eyes are open or closed and the mouth is yawning. Finally,according to the eye and mouth state,the Percentage of Eyelid Closure over the Pupil over Time (PERCLOS),Continuous Eye Closure Time (CCT),and Sustainable Yawn Time (SYT) are used to judge fatigue. The corresponding fatigue degree is obtained,which gives a more effective early warning effect. The experimental results on the new data set based on the NHTU-DDD,YawDD,and CEW datasets show that the proposed method has a fatigue feature recognition accuracy of 95.3%,an average single frame fatigue detection time of 32.6 ms,shows a low false positive rate,and a high real-time performance while ensuring detection accuracy.

Key words: fatigue driving detection, RetinaFace algorithm, state recognition, multi-feature fusion, Ghost module

中图分类号: