[1] |
LI H,YAMANISHI K.Text classification using ESC-based stochastic decision lists[C]//Proceedings of the 8th International Conference on Information and Knowledge Management.New York,USA:ACM Press,1999:122-130.
|
[2] |
KIM S B,HAN K S,RIM H C,et al.Some effective techniques for naive Bayes text classification[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(11):1457-1466.
|
[3] |
JOACHIMS T.Text categorization with support vector machines:learning with many relevant features[M].New York,USA:Springer US,1998.
|
[4] |
KAZAMA J,TSUJII J.Maximum entropy models with inequality constraints:a case study on text categorization[J].Machine Learning,2005,60(1/2/3):159-194.
|
[5] |
SOUCY P,MINEAU G W.A simple KNN algorithm for text categorization[C]//Proceedings of 2001 IEEE Inter-national Conference on Data Mining.Washington D.C.,USA:IEEE Press,2001:647-648.
|
[6] |
PENNINGTON J,SOCHER R,MANNING C.GloVe:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2014:1532-1543.
|
[7] |
MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].(2013-01-16)[2020-08-10].https://arxiv.org/pdf/1301.3781.pdf.
|
[8] |
BENGIO Y,DUCHARME R,VINCENT P,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.
|
[9] |
MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their composition-ality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2013:3111-3119.
|
[10] |
LAI Siwei.Research on word and document semantic vector representation methods based on neural network[D].Beijing:University of Chinese Academy of Sciences,2016.(in Chinese)来斯惟.基于神经网络的词和文档语义向量表示方法研究[D].北京:中国科学院大学,2016.
|
[11] |
KALCHBRENNER N,GREFENSTETTE E,BLUNSOM P.A convolutional neural network for modelling sentences[EB/OL].(2014-04-08)[2020-08-10].https://arxiv.org/pdf/1404.2188.pdf.
|
[12] |
KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2014:1746-1751.
|
[13] |
ZHANG X,ZHAO J B,LECUN Y.Character-level convolutional networks for text classification[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:649-657.
|
[14] |
JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics(Volume 2:Short Papers).San Diego,USA:ACL,2017:427-431.
|
[15] |
JOHNSON R,ZHANG T.Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).San Diego,USA:ACL,2017:562-570.
|
[16] |
HONG S,OH J,HAN B,et al.Learning transferrable knowledge for semantic segmentation with deep convolutional neural network[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:3204-3212.
|
[17] |
CONNEAU A,SCHWENK H,BARRAULT L,et al.Very deep convolutional networks for natural language processing[EB/OL].(2016-06-06)[2020-08-10].https://arxiv.org/pdf/1606.01781v1.pdf.
|
[18] |
HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778.
|
[19] |
LE H,CERISARA C,DENIS A.Do convolutional networks need to be deep for text classification?[C]//Proceedings of AAAI Workshop on Affective Content Analysis.[S.l.]:AAAI,2018:29-36.
|
[20] |
HUANG G,LIU Z,MAATEN V,et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:770-778.
|
[21] |
ZHANG Y,WALLACE B.A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification[EB/OL].(2015-10-13)[2020-08-10].https://arxiv.org/pdf/1510.03820.pdf.
|
[22] |
HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
|
[23] |
GRAVES A.Supervised sequence labelling with recurrent neural networks[M].Berlin,Germany:Springer,2012.
|
[24] |
CHO K,MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].(2014-06-03)[2020-08-10].https://arxiv.org/pdf/1406.1078.pdf.
|
[25] |
YU K Y,LIU Y,SCHWING A,et al.Fast and accurate text classification:skimming,rereading and early stopping[C]//Proceedings of the 6th International Conference on Learning Representations.Vancouver,Canada:[s.n.],2018:1-5.
|
[26] |
LIU Pengfei,QIU Xipeng,HUANG Xuanjing.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of International Joint Conference on Artificial Intelligence.[S.l.]:AAAI,2016:2873-2879.
|
[27] |
DAI A,LE Q V.Semi-supervised sequence learning[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:3079-3087.
|
[28] |
LAI Siwei,XU Liheng,LIU Kang,et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2015:2267-2273.
|
[29] |
XIAO Y J,CHO K.Efficient character-level document classification by combining convolution and recurrent layers[EB/OL].(2016-02-01)[2020-08-10].https://arxiv.org/pdf/1602.00367.pdf.
|
[30] |
HASSAN A,MAHMOOD A.Convolutional recurrent deep learning model for sentence classification[J].IEEE Access,2018,6:13949-13957.
|
[31] |
CHEN Guibin,YE Deheng,XING Zhenchang,et al.Ensemble application of convolutional and recurrent neural networks for multi-label text categorization[C]//Proceedings of 2017 International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2017:2377-2383.
|
[32] |
TOM Y,DEVAMANYU H,SOUJANYA P,et al.Recent trends in deep learning based natural language pro-cessing[J].IEEE Computational Intelligence Magazine,2018,13(3):55-75.
|
[33] |
BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations.Banff,Canada:[s.n.],2014:1-5.
|
[34] |
XU K,BA J,KIROS R,et al.Show,attend and tell:neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on Machine Learning.[S.l.]:JMLR,2015:2048-2057.
|
[35] |
HERMANN K,KOISK T,GREFENSTETTE E,et al.Teaching machines to read and comprehend[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:1693-1701.
|
[36] |
YANG Z C,YANG D Y,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies:Human Language Tech-nologies.San Diego,USA:ACL,2016:1480-1489.
|
[37] |
FAN Feifan,FENG Yansong,ZHAO Dongyan.Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2018:3433-3442.
|
[38] |
WANG Yequan,HUANG Minlie,ZHU Xiaoyan,et al.Attention-based LSTM for aspect-level sentiment classifi-cation[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2016:606-615.
|
[39] |
MA Y K,PENG H Y,CAMBRIA E.Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2018:5876-5883.
|
[40] |
LI X,BING L D,LAM W,et al.Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.San Diego,USA:ACL,2018:946-956.
|
[41] |
TANG Duyu,QIN Bing,LIU Ting.Aspect level sentiment classification with deep memory network[C]//Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2016:214-224.
|
[42] |
YAO Liang,MAO Chengsheng,LUO Yuan.Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2019:7370-7377.
|
[43] |
QIAO Chao,HUANG Bo,NIU Guocheng,et al.A new method of region embedding for text classification[C]//Proceedings of the 6th International Conference on Learning Representations.Vancouver,Canada,2018:6-10.
|
[44] |
XIANG Liuyu,JIN Xiaoming,YI Lan,et al.Adaptive region embedding for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2019:7314-7321.
|
[45] |
BAO Yujia,WU Menghua,CHANG Shiyu,et al.Few-shot text classification with distributional signatures[C]//Proceedings of the 8th International Conference on Learning Representation.Addis Ababa,Ethiopia:[s.n.],2020:1-5.
|
[46] |
JAKE S,KEVIN S,ZEMEL R.Prototypical networks for few-shot learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2017:4077-4087.
|
[47] |
ZHANG Tianyang,HUANG Minlie,ZHAO Li.Learning structured representation for text classification via reinforcement learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI,2018:6053-6060.
|
[48] |
KOWSARI K,HEIDARYSAFA M,BROWN D E,et al.RMDL:random multimodel deep learning for classification[C]//Proceedings of the 2nd International Conference on Information System and Data Mining.New York,USA:ACM Press,2018:19-28.
|
[49] |
TANG Duyu,QIN Bing,LIU Ting.Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.San Diego,USA:ACL,2015:1422-1432.
|
[50] |
CHEN Ke,LIANG Bin,KE Wende,et al.Chinese micro-blog sentiment analysis based on multi-channels convolutional neural networks[J].Journal of Computer Research and Development,2018,55(5):945-957.(in Chinese)陈珂,梁斌,柯文德,等.基于多通道卷积神经网络的中文微博情感分析[J].计算机研究与发展,2018,55(5):945-957.
|
[51] |
GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2014:2672-2680.
|
[52] |
DAI B,FIDLER S,URTASUN R,et al.Towards diverse and natural image descriptions via a conditional GAN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2989-2998.
|
[53] |
YANG Zhen,CHEN Wei,WANG Feng,et al.Improving neural machine translation with conditional sequence generative adversarial nets[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.San Diego,USA:ACL,2018:1346-1355.
|
[54] |
ZHANG Han,XU Tao,LI Hongsheng,et al.StackGAN:text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:5908-5916.
|
[55] |
XU Tao,ZHANG Pengchuan,HUANG Qiuyuan,et al.AttnGAN:fine-grained text to image generation with attentional generative adversarial networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1316-1324.
|
[56] |
QIAO Tingting,ZHANG Jing,XU Duanqing,et al.MirrorGAN:learning text-to-image generation by redescrip-tion[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2019:1505-1514.
|