[1] LI Shanqing,TANG Liang,LIU Keyan,et al.A fast and adaptive object tracking method[J].Journal of Computer Research and Development,2012,49(2):383-391.(in Chinese)李善青,唐亮,刘科研,等.一种快速的自适应目标跟踪方法[J].计算机研究与发展,2012,49(2):383-391. [2] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [3] BAY H,TUYTELAARS T,VAN GOOL L.SURF:speeded up robust features[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2006:404-417. [4] LEPETIT V,FUA P.Keypoint recognition using randomized trees[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1465-1479. [5] BAKER S,MATTHEWS I.Lucas-Kanade 20 years on:a unifying framework[J].International Journal of Computer Vision,2004,56(3):221-255. [6] RICHA R,SZNITMAN R,TAYLOR R,et al.Visual tracking using the sum of conditional variance[C]//Proceedings of IEEE International Conference on Intelligent Robots and Systems.Washington D.C.,USA:IEEE Press,2011:2953-2958. [7] BENHIMANE S,MALIS E.Real-time image-based tracking of planes using efficient second-order minimization[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Sendai,Japan:[s.n.],2004:943-948. [8] WANG Tao,LING Haibin.Gracker:a graph-based planar object tracker[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(6):1494-1501. [9] MIKOLAJCZYK K,SCHMID C.A performance evalua-tion of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630. [10] LIANG Pengpeng,WU Yifang,LU Hui,et al.Planar object tracking in the wild:a benchmark[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation.Brisbane,Australia:[s.n.],2018:651-658. [11] OZUYSAL M,CALONDER M,LEPETIT V,et al.Fast keypoint recognition using random ferns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3):448-461. [12] ZHAO Liming,LI Xiao,XIAO Jun,et al.Metric learning driven multi-task structured output optimization for robust keypoint tracking[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.Austin,USA:AAAI Press,2015:356-367. [13] WAGNER D,REITMAYR G,MULLONI A,et al.Real-time detection and tracking for augmented reality on mobile phones[J].IEEE Transactions on Visualization and Computer Graphics,2010,16(3):355-368. [14] HARE S,SAFFARI A,TORR P H S.Efficient online structured output learning for keypoint-based object tracking[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Rhode,USA:[s.n.],2012:1894-1901. [15] WANG Bin,WENG Zhengkui,WANG Kun,et al.Real-time tracking method for eye feature points based on Lucas-kanada optical flow algorithm[J].Computer Engineering,2015,41(7):244-249.(in Chinese)王彬,翁政魁,王坤,等.基于Lucas-Kanada光流法的人眼特征点实时跟踪方法[J].计算机工程,2015,41(7):244-249. [16] ADELSON E H.The extraction of spatio-temporal energy in human an machine vision[C]//Proceedings of Workshop on Motion Representation and Analysis.Charleston,USA:[s.n.],1986:213-227. [17] HORN B K P,SCHUNCK B G.Determining optical flow[C]//Proceedings of International Society for Optics and Photonics Conference on Techniques and Applications of Image Understanding.Kalifornien,USA:[s.n.],1981:319-331. [18] NAGEL H H.On the estimation of optical flow:relations between different approaches and some new results[J].Artificial Intelligence,1987,33(3):299-324. [19] BLACK M J,ANANDAN P.The robust estimation of multiple motions:Parametric and piecewise-smooth flow fields[J].Computer Vision and Image Understanding,1996,63(1):75-104. [20] SINGH A.An estimation-theoretic framework for image-flow computation[C]//Proceedings of Workshop on Image Understanding.Pittsburgh,USA:Morgan Kaufmann Pub,1990:314. [21] ANANDAN P.A computational framework and an algorithm for the measurement of visual motion[J].International Journal of Computer Vision,1989,2(3):283-310. [22] HAGLUND L.Adaptive multidimensional filtering[D].Linköping,Sweden:Linköping University,1991. [23] FLEET D J,JEPSON A D.Computation of component image velocity from local phase information[J].Inter-national Journal of Computer Vision,1990,5(1):77-104. [24] ZHANG Wenda,XU Yuelei,MA Shiping,et al.Optical flow calculating method based on multi-scale V1-MT feedforward model[J].Computer Engineering,2017,43(9):205-209.(in Chinese)张文达,许悦雷,马时平,等.基于多尺度V1-MT前馈模型的光流计算方法[J].计算机工程,2017,43(9):205-209. [25] DOSOVITSKIY A,FISCHER P,ILG E,et al.FlowNet:learning optical flow with convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Santiago,USA:[s.n.],2015:2758-2766. [26] ILG E,MAYER N,SAIKIA T,et al.FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA:[s.n.],2017:1647-1655. [27] LUCAS B D,KANADE T.An iterative image registration technique with an application to stereo vision[C]//Proceedings of IEEE International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,1981:674-679. [28] KWON J,LEE H S,PARK F C,et al.A geometric particle filter for template-based visual tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(4):625-643. [29] BAO Chenglong,WU Yi,LING Haibin,et al.Real time robust l1 tracker using accelerated proximal gradient approach[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:1830-1837. [30] ROSS D A,LIM J,LIN R S,et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision,2008,77(1/2/3):125-141. [31] WU Y,LIM J,YANG M H.Object tracking benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1834-1848. |