1 |
杨青, 钟书华. 国外"虚拟现实技术发展及演化趋势"研究综述. 自然辩证法通讯, 2021, 43 (3): 97- 106.
URL
|
|
YANG Q , ZHONG S H . A review of foreign countries on the development and evolution trends of virtual reality technology. Journal of Dialectics of Nature, 2021, 43 (3): 97- 106.
URL
|
2 |
KIRSH D . Thinking with external representations. AI & Society, 2010, 25 (4): 441- 454.
|
3 |
李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述. 计算机工程, 2022, 48 (7): 1- 12.
URL
|
|
LI K Q , CHEN Y , LIU J C , et al. Survey of deep learning-based object detection algorithms. Computer Engineering, 2022, 48 (7): 1- 12.
URL
|
4 |
HE C H, LI R H, LI S, et al. Voxel set transformer: a set-to-set approach to 3D object detection from point clouds[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 8407-8417.
|
5 |
YANG L H, ZHUO W, QI L, et al. ST: make self-training work better for semi-supervised semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 4258-4267.
|
6 |
CHEN Z Z, WANG T, WU X W, et al. Class re-activation maps for weakly-supervised semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 959-968.
|
7 |
李杰. 基于深度卷积神经网络的关键点检测算法研究. 成都: 中国科学院光电技术研究所, 2022,
URL
|
|
LI J . Research on keypoint detection algorithm based on deep convolutional neural network. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2022,
URL
|
8 |
WANG Z T, NIE X C, QU X C, et al. Distribution-aware single-stage models for multi-person 3D pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 13086-13095.
|
9 |
PAVLAKOS G, ZHOU X W, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for single-image 3D human pose[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 1263-1272.
|
10 |
SUN X, XIAO B, WEI F Y, et al. Integral human pose regression[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 536-553.
|
11 |
ZHAN Y, LI F H, WENG R L, et al. Ray3D: ray-based 3D human pose estimation for monocular absolute 3D localization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 13106-13115.
|
12 |
CHEN Y J, TU Z G, KANG D, et al. Model-based 3D hand reconstruction via self-supervised learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 10446-10455.
|
13 |
LIU S W, JIANG H W, XU J R, et al. Semi-supervised 3D hand-object poses estimation with interactions in time[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 14682-14692.
|
14 |
MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3d human pose estimation[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2659-2668.
|
15 |
LI C, LEE G H. Generating multiple hypotheses for 3D human pose estimation with mixture density network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 9879-9887.
|
16 |
CHEN C H, RAMANAN D. 3D human pose estimation=2D pose estimation matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 5759-5767.
|
17 |
ZIMMERMANN C, BROX T. Learning to estimate 3D hand pose from single RGB images[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 4913-4921.
|
18 |
MUELLER F, BERNARD F, SOTNYCHENKO O, et al. GANerated hands for real-time 3D hand tracking from monocular RGB[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 49-59.
|
19 |
ZHOU K, HAN X G, JIANG N J, et al. HEMlets pose: learning part-centric heatmap triplets for accurate 3D human pose estimation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2020: 2344-2353.
|
20 |
DOOSTI B, NAHA S, MIRBAGHERI M, et al. HOPE-Net: a graph-based model for hand-object pose estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 6607-6616.
|
21 |
NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 483-499.
|
22 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[EB/OL]. [2022-10-02]. https://arxiv.org/abs/1602.07261.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
25 |
黄青丹, 何彬彬, 宋浩永, 等. 基于双目立体视觉的目标空间坐标计算及姿态估计. 华南师范大学学报(自然科学版), 2020, 52 (2): 9- 13.
URL
|
|
HUANG Q D , HE B B , SONG H Y , et al. Space coordinate calculation and attitude estimation based on binocular stereo vision. Journal of South China Normal University(Natural Science Edition), 2020, 52 (2): 9- 13.
URL
|
26 |
|
27 |
ZHOU Y X, HABERMANN M, XU W P, et al. Monocular real-time hand shape and motion capture using multi-modal data[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 5345-5354.
|