[1] 张晨阳, 黄腾, 吴壮壮.基于K-Means聚类与深度学习的RGB-D SLAM算法[J].计算机工程, 2022, 48(1):236-244, 252. ZHANG C Y, HUANG T, WU Z Z.RGB-D SLAM algorithm based on K-means clustering and deep learning[J].Computer Engineering, 2022, 48(1):236-244, 252.(in Chinese) [2] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al.ORB-SLAM 3:An accurate open-source library for visual, visual-inertial and multi-map SLAM[BE/OL].[2021-07-07].https://arxiv.org/pdf/2007.11898. [3] MUR-ARTAL R, TARDÓS J D.ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras[J].IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [4] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J.DTAM:Dense tracking and mapping in real-time[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:2320-2327. [5] ENGEL J, SCHÖPS T, CREMERS D.LSD-SLAM:large-scale direct monocular SLAM[M].Berlin, Germany:Springer, 2014. [6] SALAS-MORENO R F, NEWCOMBE R A, STRASDAT H, et al.SLAM:simultaneous localisation and mapping at the level of objects[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:1352-1359. [7] CHEN W, FANG M, LIU Y H, et al.Monocular semantic SLAM in dynamic street scene based on multiple object tracking[C]//Proceedings of IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics.Washington D.C., USA:IEEE Press, 2017:599-604. [8] BESCOS B, FÁCIL J M, CIVERA J, et al.DynaSLAM:tracking, mapping, and inpainting in dynamic scenes[J].IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083. [9] JOHNSON J W.Adapting mask-RCNN for automatic nucleus segmentation[EB/OL].[2021-07-07].https://arxiv.org/abs/1805.00500. [10] YU C, LIU Z X, LIU X J, et al.DS-SLAM:a semantic visual SLAM towards dynamic environments[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2018:1168-1174. [11] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for imagesegmentation[EB/OL].[2021-07-07].https://arxiv.org/abs/1511.00561. [12] HOWARD A, SANDLER M, CHU G, et al.Searching for MobileNetV3[EB/OL].[2021-07-07].https://arxiv.org/abs/1905.02244. [13] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-07-07].https://arxiv.org/abs/1704.04861. [14] SANDLER M, HOWARD A, ZHU M L, et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4510-4520. [15] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004, 60(2):91-110. [16] BAY H, TUYTELAARS T, VAN GOOL L.SURF:speeded up robust features[M].Berlin, Germany:Springer, 2006. [17] RUBLEE E, RABAUD V, KONOLIGE K, et al.ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2011:2564-2571. [18] 高翔, 张涛, 刘毅.视觉SLAM十四讲从理论到实践[M].北京:电子工业出版社, 2017. GAO X, ZHANG T, LIU Y.Lecture 14 of visual SLAM:from theory to practice[M].Beijing:Publishing House of Electronics Industry, 2017.(in Chinese) [19] BOUGUET J Y.Pyramidal implementation of the affine lucas-kanade feature tracker description of the algorithm[EB/OL].[2021-07-07].https://www.doc88.com/p-7038947449312.html?r=1. [20] KERL C, STURM J, CREMERS D.Dense visual SLAM for RGB-D cameras[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2013:2100-2106. [21] CHENG J Y, SUN Y X, MENG M Q H.Improving monocular visual SLAM in dynamic environments:an optical-flow-based approach[J].Advanced Robotics, 2019, 33(12):576-589. [22] SUN Y X, LIU M, MENG M Q H.Improving RGB-D SLAM in dynamic environments:a motion removal approach[J].Robotics and Autonomous Systems, 2017, 89:110-122. |