作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (8): 187-195,205. doi: 10.19678/j.issn.1000-3428.0062294

• 图形图像处理 • 上一篇    下一篇

动态环境下融合轻量级YOLOv5s的视觉SLAM

伍子嘉1, 陈航1, 彭勇1, 宋威2   

  1. 1. 江南大学 物联网工程学院, 江苏无锡 214122;
    2. 江南大学 人工智能与计算机学院, 江苏无锡 214122
  • 收稿日期:2021-08-07 修回日期:2021-10-12 发布日期:2021-10-14
  • 作者简介:伍子嘉(1997-),男,硕士研究生,主研方向为深度学习、机器人视觉;陈航,硕士研究生;彭勇,副教授;宋威,教授。
  • 基金资助:
    国家自然科学基金(62076110)。

Visual SLAM with Lightweight YOLOv5s in Dynamic Environment

WU Zijia1, CHEN Hang1, PENG Yong1, SONG Wei2   

  1. 1. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China;
    2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2021-08-07 Revised:2021-10-12 Published:2021-10-14

摘要: 移动机器人在未知环境下依靠同步定位与地图构建(SLAM)实现自身的精确定位,目前大多数视觉SLAM系统在运行时均假设外部环境是静态的,但在实际应用场景下该假设并不成立,传统的视觉SLAM系统在动态环境下易受移动目标的影响,导致系统定位精度下降。提出一种新的视觉SLAM系统,将轻量级网络MobileNetV3作为目标检测网络YOLOv5s的主干网络,从而减少模型参数量,提高算法在CPU上的推理速度。将目标检测网络、光流法与ORB-SLAM系统相结合,使SLAM系统前端提取ORB特征点的同时能够有效剔除动态特征点。仅利用静态目标上的特征点进行帧间匹配,从而求解相机位姿,提高系统在动态环境下的定位精度。在TUM动态数据集上的实验结果表明,与ORB-SLAM3系统相比,该系统的位姿估计精度提升了80.16%,与DS-SLAM、DVO-SLAM系统等动态SLAM系统相比,该系统在定位精度上有大幅提升,相比使用MASK-RCNN的DynaSLAM系统,在保持相近ATE指标的情况下,该系统具有更高的实时性。

关键词: 同步定位与地图构建, 动态环境, 目标检测, 轻量级网络, 光流法

Abstract: Simultaneous Localization and Mapping (SLAM) is indispensable for mobile robots to achieve accurate localization in an unknown environment. Currently, most visual SLAM systems assume that the external environment is static, but this assumption cannot be satisfied in practical application scenarios.The traditional visual SLAM system is easily affected by moving targets in a dynamic environment, decreasing the system localization accuracy.This study proposes a new visual SLAM systems, uses a lightweight network, MobileNetV3, as the backbone network of target detection network YOLOv5s, to reduce the number of model parameters and improve the inference speed of the algorithm on the CPU.The combination of the target detection network, optical flow method, and ORB-SLAM system enables the front-end of SLAM system to extract ORB feature points and effectively eliminate dynamic feature points. Only feature points on static targets are used for frame matching to solve camera pose and improve the positioning accuracy of the system in a dynamic environment.The experimental results for TUM dynamic dataset show that the pose estimation accuracy of the proposed system is improved by 80.16% compared with the ORB-SLAM3 system.Compared to other dynamic SLAM systems, such as DS-SLAM and DVO-SLAM, the positioning accuracy of the proposed system improved significantly.The proposed system achieved better real-time performance than the DynaSLAM system with MASK-RCNN, while maintaining similar ATE metrics.

Key words: Simultaneous Localization and Mapping(SLAM), dynamic environment, target detection, lightweight network, optical flow method

中图分类号: