[1] NOY N,GAO Y,JAIN A,et al.Industry-scale knowledge graphs:lessons and challenges[J].Communications of the ACM,2019,17(2):48-75. [2] JI S X,PAN S R,CAMBRIA E,et al.Asurvey on knowledge graphs:representation,acquisition and applications[EB/OL].[2019-03-15].https://arxiv.org/pdf/2002.00388.pdf. [3] WU Tianxing,QI Guilin,LI Cheng,et al.A survey of techniques for constructing Chinese knowledge graphs and their applications[J].Sustainability,2018,10(9):3245. [4] WANG Quan,MAO Zhendong,WANG Bin,et al.Knowledge graph embedding:a survey of approaches and applications[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [5] LIN Yankai,HAN Xu,XIE Ruobing,et al.Knowledge representation learning:a quantitative review[EB/OL].[2019-03-15].https://arxiv.org/pdf/1812.10901.pdf. [6] LIN Hailun,WANG Yuanzhuo,JIA Yantao,et al.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers,2017(1):3-29.(in Chinese)林海伦,王元卓,贾岩涛,等.面向网络大数据的知识融合方法综述[J].计算机学报,2017,40(1):3-29. [7] ZHAO Xiaojuan,JIA Yan,LI Aiping,et al.Multi-source knowledge fusion:a survey[C]//Proceedings of the 4th IEEE International Conference on Data Science in Cyberspace.Washington D.C.,USA:IEEE Press,2019:119-127. [8] ZOU L,ÖZSU M T.Graph-based RDF data management[J].Data Science and Engineering,2017,2(1):56-70. [9] WYLOT M,HAUSWIRTH M,CUDRÉ-MAUROUX P,et al.RDF data storage and query processing schemes:a survey[J].ACM Computing Surveys,2018,51(4):1-36. [10] WANG Xin,ZOU Lei,WANG Chaokun,et al.Research on knowledge graph data management:a survey[J].Journal of Software,2019,30(7):2139-2174.(in Chinese)王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174. [11] GUAN Saiping,JIN Xiaolong,JIA Yantao,et al.Knowledge reasoning over knowledge graph:a survey[J].Journal of Software,2018,29(10):2966-2994.(in Chinese)官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报,2018,29(10):2966-2994. [12] LI Wenzhuo,QI Guilin,JI Qiu.Hybrid reasoning in knowledge graphs:combing symbolic reasoning and statistical reasoning[J].Semantic Web,2020,11(1):53-62. [13] HITZLER P,BIANCHI F,EBRAHIMI M,et al.Neural-symbolic integration and the semantic Web[J].Semantic Web,2020,11(1):3-11. [14] PAULHEIM H.Knowledge graph refinement:a survey of approaches and evaluation methods[J].Semantic Web,2017,8(3):489-508. [15] KEJRIWAL M,KNOBLOCK C,SZEKELY P.Constructing domain-specific knowledge graphs[C]//Proceedings of the 16th International Semantic Web Conference.Vienna,Austria:[s.n.],2017:1-8. [16] GAO Y,LIANG J,HAN B,et al.Building a large-scale,accurate and fresh knowledge graph[C]//Proceedings of IEEE KDD'18.Washington D.C.,USA:IEEE Press,2018:39. [17] SINGHAL A.Introducing the knowledge graph:things,not strings[EB/OL].[2019-03-15].http://googleblog.blogspot.be/2012/05/introducing-knowledge-graph-things-not.html. [18] HE Shizhu,LIU Kang,JI Guoliang,et al.Learning to represent knowledge graphs with gaussian embedding[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.New York,USA:ACM Press,2015:623-632. [19] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of NIPS'13.Stateline,USA:[s.n.],2013:2787-2795. [20] WANG Zhen,ZHANG Jianwen,FENG Jianlin,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Québec,Canada:AAAI Press,2014:1112-1119. [21] JI Guoliang,HE Shizhu,XU Liheng,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing,China:[s.n.],2015:687-696. [22] NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning.Bellevue,USA:[s.n.],2011:809-816. [23] YANG B,YIH W T,HE X D,et al.Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2019-03-15].https://arxiv.org/pdf/1412.6575.pdf. [24] TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learnin.New York,USA:ACM Press,2016:125-136. [25] LIU Q,JIANG H,EVDOKIMOV A,et al.Probabilistic reasoning via deep learning:neural association models[EB/OL].[2019-03-15]. https://arxiv.org/pdf/1603.07704.pdf. [26] CUI Peng,WANG Xiao,PEI Jian,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(5):833-852. [27] ZHOU Jie,CUI Ganqu,ZHANG Zhengyan,et al.Graph neural networks:a review of methods and applications[EB/OL].[2019-03-15].https://arxiv.org/pdf/1812.08434.pdf. [28] WU Zonghan,PAN Shirui,CHEN Fengwen,et al.A comprehensive survey on graph neural networks[EB/OL].[2019-03-15].https://arxiv.org/pdf/1901.00596.pdf. [29] WANG Daixin,CUI Peng,ZHU Wenwu.Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,USA:[s.n.],2016:1225-1234. [30] HUANG Xiao,LI Jundong,HU Xia.Label informed attributed network embedding[C]//Proceedings of the 20th ACM International Conference on Web Search and Data Mining.Cambridge,UK:[s.n.],2017:731-739. [31] LIU Zhengming,MA Hong,LIU Shuxin,et al.Network representation learning algorithm incorporated with node profile attribute information[J].Computer Engineering,2018,44(11):165-171.(in Chinese)刘正铭,马宏,刘树新,等.一种融合节点文本属性信息的网络表示学习算法[J].计算机工程,2018,44(11):165-171. [32] SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Proceedings of European Semantic Web Conference.Heraklion,Greek:[s.n.],2018:593-607. [33] CHIU J P C,NICHOLS E.Named entity recognition with bidirectional LSTM-CNNs[J].Transactions of Association for Computational Linguistics,2016,4:357-370. [34] LAMPLE G,BALLESTEROS M,SUBRAMANIAN S,et al.Neural architectures for named entity recognition[EB/OL].[2019-03-15]. https://arxiv.org/pdf/1603.01360.pdf. [35] DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-03-15]. https://arxiv.org/pdf/1810.04805.pdf. [36] CRAVEN M,KUMLIEN J.Constructing biological knowledge bases by extracting information from text sources[C]//Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology.Berlin,Germany:Springer,1999:77-86. [37] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP.Singapore:[s.n.],2009:1003-1011. [38] ZENG Daojian,LIU Kang,CHEN Yubo,et al.Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon,Portugal:[s.n.],2015:1753-1762. [39] BAO Kaifang,Gu Junzhong,YANG Jing.Knowledge graph completion method based on jointly representation of structure and text[J].Computer Engineering,2018,44(7):205-211.(in Chinese)鲍开放,顾君忠,杨静.基于结构与文本联合表示的知识图谱补全方法[J].计算机工程,2018,44(7):205-211. [40] TAI C H,CHANG C T,CHANG Y S.Hybrid knowledge fusion and inference on cloud environment[J].Future Generation Computer Systems,2018,87:568-579. [41] SMIRNOV A,LEVASHOVA T,SHILOV N.Patterns for context-based knowledge fusion in decision support systems[J].Information Fusion,2015,21:114-129. [42] HJØRLAND B.Facet analysis:the logical approach to knowledge organization[J].Information Processing & Management,2013,49(2):545-557. [43] DONG X L,GABRILOVICH E,HEITZ G,et al.From data fusion to knowledge fusion[EB/OL].[2019-03-15].https://arxiv.org/pdf/1503.00302.pdf. [44] ANGLES R,ARENAS M,BARCELÓ P,et al.Foundations of modern query languages for graph databases[J].ACM Computing Surveys,2017,50(5):1-40. [45] YAN Da,BU Yingyi,TAN Yuanyuan,et al.Big graph analytics platforms[J].Foundations and Trends in Databases,2017,7(1/2):1-19. [46] MCCUNE R R,WENINGER T,MADEY G.Thinking like a vertex:a survey of vertex-centric frameworks for large-scale distributed graph processing[J].ACM Computing Surveys,2015,48(2):1-39. [47] CHEN Y,GOLDBERG S,WANG D Z,et al.Ontological pathfinding[C]//Proceedings of 2016 International Conference on Management of Data.San Francisco,USA:[s.n.],2016:835-846. [48] COHEN W W,YANG F,MAZAITIS K R.TensorLog:deep learning meets probabilistic DBs[EB/OL].[2019-03-15]. https://arxiv.org/pdf/1707.05390.pdf. [49] SHI Baoxu,WENINGER T.ProjE:embedding projection for knowledge graph completion[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.San Francisco,USA:[s.n.],2017:1236-1242. [50] HOHENECKER P,LUKASIEWICZ T.Deep learning for ontology reasoning[EB/OL].[2019-03-15]. https://arxiv.org/pdf/1705.10342.pdf. [51] GUO Shu,DING Boyang,WANG Quan,et al.Knowledge base completion via rule-enhanced relational learning[C]//Proceedings of Conference on Knowledge Graph and Semantic Computing.Beijing,China:[s.n.],2016:219-227. [52] BERANT J,CHOU A,FROSTIG R,et al.Semantic parsing on freebase from question-answer pairs[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing.Seattle,USA:[s.n.],2013:1533-1544. [53] YAO X,VAN D B.Information extraction over structured data:Question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore,USA:[s.n.],2014:956-966. [54] DIEFENBACH D,LOPEZ V,SINGH K,et al.Core techniques of question answering systems over knowledge bases:a survey[J].Knowledge and Information Systems,2018,55(3):529-569. [55] CHEN Yubo,XU Liheng,LIU Kang,et al.Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing,China:[s.n.].2015:167-176. [56] BIZER C,SEABORNE A.D2RQ-treating non-RDF databases as virtual RDF graphs[C]//Proceedings of the 3rd International Semantic Web Conference.Hiroshima,Japan:[s.n.],2004:222-234. [57] BIZER C,CYGANIAK R.D2R server-publishing relational databases on the semantic Web[C]//Proceedings of the 5th International Semantic Web Conference.Athens,USA:[s.n.],2006:175. [58] BAUMGARTNER R,FLESCA S,GOTTLOB G.Visual Web information extraction with Lixto[C]//Proceedings of the 27th VLDB Conference.Roma,Italy:[s.n.].2001:345-357. [59] DONG X,GABRILOVICH E,HEITZ G,et al.Knowledge vault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:601-610. [60] NENOV Y,PIRO R,MOTIK B,et al.RDFox:a highly-scalable RDF store[C]//Proceedings of International Semantic Web Conference.Bethlehem,USA:[s.n.].2015:3-20. [61] TigerGraph.Benchmark report of figure analysis system[EB/OL].[2019-03-15].https://www.tigergraph.com.cn/wp-content/uploads/2019/02/TigerGraph-Benchmark-Report-20190217.pdf.(in Chinese) TigerGraph.图分析系统基准测试报告[EB/OL].[2019-03-15].https://www.tigergraph.com.cn/wp-content/uploads/2019/02/TigerGraph-Benchmark-Report-20190217.pdf. |