[1] REBECCA A, LAUREN P, ROBERT G, et al.The united states national cancer institute's coordinated research effort on tobacco use as a major cause of morbidity and mortality among people with HIV[J].Nicotine & Tobacco Research, 2021, 23(2):1-10. [2] FEICHTENHOFER C, PINZ A, ZISSERMAN A.Convolutional two-stream network fusion for video action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1933-1941. [3] 林镇涛.中距离户外施工人员吸烟行为检测方法研究[D]. 成都:电子科技大学, 2020. LIN Z T, Research on smoking behavior detection method of middle-distance outdoor construction workers[D].Chengdu:University of Electronic Science and Technology of China, 2020.(in Chinese) [4] ZHANG D, CHEN J, WANG S.Smoking image detection based on convolutional neural networks[C]//Proceedings of the 4th International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2018:1-10. [5] 刘远丁.基于多特征融合的室内吸烟烟雾识别算法研究[D].秦皇岛:燕山大学, 2018. LIU Y D.Research on indoor smoking smoke recognition algorithm based on multi-feature fusion[D].Qinhuangdao:Yanshan University, 2018.(in Chinese) [6] 王梦依.基于深度学习图像处理的吸烟行为检测[D].北京:北方工业大学, 2020. WANG M Y.Smoking behavior detection based on deep learning image processing[D].Beijing:North China University of Technology, 2020.(in Chinese) [7] ZHAO R, WANG M, ZHAI Z, et al.Indoor smoking behavior detection based on YOLOv3-tiny[C]//Proceedings of Chinese Automation Congress.Hangzhou, China:[s.n.], 2019:3477-3481. [8] ARTAN Y, BALCI B, ELIHOS A, et al.Vision based driver smoking behavior detection using surveillance camera images[C]//Proceedings of International Conference on Image Analysis and Processing.New York, USA:[s.n.], 2019:468-476. [9] 李倩.基于深度学习的烟支检测技术研究与应用[D].西安:西安邮电大学, 2020. LI Q.Research and application of cigarette detection technology based on deep learning[D].Xi'an:Xi'an University of Posts and Telecommunications, 2020.(in Chinese) [10] 程淑红, 马晓菲, 张仕军, 等.基于多任务分类的吸烟行为检测[J].计量学报, 2020, 41(5):538-543. CHENG S H, MA X F, ZHANG S J, et al.Smoking behavior detection based on multi-task classification[J].Acta Metrology, 2020, 41(5):538-543.(in Chinese) [11] 韩贵金, 李倩.基于Faster R-CNN的吸烟快速检测算法[J].西安邮电大学学报, 2020, 25(2):85-91. HAN G J, LI Q.Faster smoking detection algorithm based on Faster R-CNN[J].Journal of Xi'an University of Posts and Telecommunications, 2020, 25(2):85-91.(in Chinese) [12] ZITNICK C L, DOLLAR P.Edge boxes:locating object proposals from edges[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:391-405. [13] TAN M, PANG R, LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1-10. [14] XIAO T, XU Y, YANG K, et al.The application of two-level attention models in deep convolutional neural network for fine-grained image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1-10. [15] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [16] DOLLAR P, ZITNICK C L.Structured forests for fast edge detection[C]//Proceedings of the IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2013:1841-1848. [17] 张迪.中国吸烟流行趋势及其对慢性疾病的影响[J].中华医学杂志, 2020, 100(24):1871. ZHANG D.The trend of smoking in China and its impact on chronic diseases[J].Chinese Medical Journal, 2020, 100(24):1871.(in Chinese) [18] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [19] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multiBox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [20] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 99:2999-3007. [21] SUN M, YUAN Y, ZHOU F, et al.Multi-attention MultiClass constraint for fine-grained image recognition[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:834-850. [22] HUANG W F, ZHANG T, CHANG D L, et al.Fine-grained image classification method based on the multiple perspectives fusion[J].Signal Processing, 2021, 154:100-110. [23] WANG Y, MORARIU V I, DAVIS L S.Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4148-4157. |