[1] FU B, DAMER N, KIRCHBUCHNER F, et al.Sensing technology for human activity recognition:a comprehensive survey[J].IEEE Access, 2020, 8:83791-83820. [2] HASSAN M M, UDDIN M Z, MOHAMED A, et al.A robust human activity recognition system using smartphone sensors and deep learning[J].Future Generation Computer Systems, 2018, 81:307-313. [3] DANG L M, MIN K, WANG H, et al.Sensor-based and vision-based human activity recognition:a comprehensive survey[J].Pattern Recognition, 2020, 108:107561. [4] TU Z, XIE W, QIN Q, et al.Multi-stream CNN:learning representations based on human-related regions for action recognition[J].Pattern Recognition, 2018, 79:32-43. [5] LI J, XIE X, PAN Q, et al.SGM-Net:skeleton-guided multimodal network for action recognition[J].Pattern Recognition, 2020, 104:107356. [6] BULLING A, BLANKE U, SCHIELE B.A tutorial on human activity recognition using body-worn inertial sensors[J].ACM Computing Surveys, 2014, 46(3):1-33. [7] FERHAT A, SAMER M, MARIAM D, et al.Physical human activity recognition using wearable sensors[J].Sensors, 2015, 15(12):31314-31338. [8] LIMA W S, SOUTO E, EL-KHATIB K, et al.Human activity recognition using inertial sensors in a smartphone:an overview[J].Sensors, 2019, 19(14):235-244. [9] JOBANPUTRA C, BAVISHI J, DOSHI N.Human activity recognition:a survey[J].Procedia Computer Science, 2019, 155:698-703. [10] WANG J, CHEN Y, HAO S, et al.Deep learning for sensor-based activity recognition:a survey[J].Pattern Recognition Letters, 2017, 119:3-11. [11] NWEKE H F, TEH Y W, AL-GARADI M A, et al.Deep learning algorithms for human activity recognition using mobile and wearable sensor networks:state of the art and research challenges[J].Expert Systems with Applications, 2018, 105:233-261. [12] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-01-20].https://arxiv.org/pdf/1409.1556.pdf. [13] 寇大磊, 权冀川, 张仲伟.基于深度学习的目标检测框架进展研究[J].计算机工程与应用, 2019, 55(11):25-34. KOU D L, QUAN J C, ZHANG Z W.Research on progress of object detection framework based on deep learning[J].Computer Engineering and Applications, 2019, 55(11):25-34.(in Chinese) [14] TU Z, LI H, ZHANG D, et al.Action-stage emphasized spatio-temporal VLAD for video action recognition[J].IEEE Transactions on Image Processing, 2019, 28(6):2799-2812. [15] YONG D, YUN F, LIANG W.Representation learning of temporal dynamics for skeleton-based action recognition[J].IEEE Transactions on Image Processing, 2016, 25(7):3010-3022. [16] YOUNG T, HAZARIKA D, PORIA S, et al.Recent trends in deep learning based natural language processing[J].IEEE Computational Intelligence Magazine, 2018, 13(3):55-75. [17] LI X, YI X, LIU Z, et al.Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system[J].Journal of Cleaner Production, 2021, 294:1-12. [18] ABDULMAJID M, JAE-YOUNG P.Deep recurrent neural networks for human activity recognition[J].Sensors, 2017, 17(11):2556. [19] LEE S M, YOON S M, CHO H.Human activity recognition from accelerometer data using convolutional neural network[C]//Proceedings of 2017 IEEE International Conference on Big Data and Smart Computing.Washington D.C., USA:IEEE Press, 2017:131-134. [20] HA Q D, TRAN M T.Activity recognition from inertial sensors with convolutional neural networks[C]//Proceedings of International Conference on Future Data and Security Engineering.Berlin, Germany:Springer, 2017:285-298. [21] 范长军, 高飞.基于可穿戴传感器的普适化人体活动识别[J].传感技术学报, 2018, 31(7):1124-1131. FAN C J, GAO F.Human daily activity recognition based on wearable sensors[J].Chinese Journal of Sensors and Actuators, 2018, 31(7):1124-1131.(in Chinese) [22] ALJARRAH A A, ALI A H.Human activity recognition using PCA and BiLSTM recurrent neural networks[C]//Proceedings of the 2nd International Conference on Engineering Technology and its Applications.Washington D.C., USA:IEEE Press, 2019:156-160. [23] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [24] YU Y, SI X, HU C, et al.A review of recurrent neural networks:LSTM cells and network architectures[J].Neural Computation, 2019, 31(7):1235-1270. [25] LEUTHEUSER H, SCHULDHAUS D, ESKOFIER B M.Hierarchical, multi-sensor based classification of daily life activities:comparison with state-of-the-art algorithms using a benchmark dataset[J].PLoS One, 2013, 8(10):75196-75207. [26] 赵小强, 宋昭漾.Adam优化的CNN超分辨率重建[J].计算机科学与探索, 2019, 13(5):858-865. ZHAO X Q, SONG Z Y.Adam optimized CNN super-resolution reconstruction[J].Journal of Frontiers of Computer Science and Technology, 2019, 13(5):858-865.(in Chinese) [27] 魏世超, 李歆, 张宜弛, 等.基于E-t-SNE的混合属性数据降维可视化方法[J].计算机工程与应用, 2020, 56(6):66-72. WEI S C, LI X, ZHANG Y C, et al.Dimension reduction and visualization of mixed-type data based on E-t-SNE[J].Computer Engineering and Applications, 2020, 56(6):66-72.(in Chinese) [28] 马吉, 刘瑞, 张建霞.基于改进t-SNE算法的人体运动数据关键帧提取[J].计算机工程, 2016, 42(5):258-262. MA J, LIU R, ZHANG J X.Key frame extraction for human motion data based on improved t-SNE algorithm[J].Computer Engineering, 2016, 42(5):258-262.(in Chinese) [29] 陈明豪, 祝跃飞, 芦斌, 等.基于Attention-CNN的加密流量应用类型识别[J].计算机科学, 2021, 48(4):325-332. CHEN M H, ZHU Y F, LU B, et al.Classification of application type of encrypted traffic based on attention-CNN[J].Computer Science, 2021, 48(4):325-332.(in Chinese) |