1 |
MAYER N, ILG E, HÄUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4040-4048.
|
2 |
ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1592-1599.
|
3 |
ZBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 2016, 17 (1): 2287- 2318.
|
4 |
LUO W J, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 5695-5703.
|
5 |
PARK H, LEE K M. Look wider to match image patches with convolutional neural networks. IEEE Signal Processing Letters, 2017, 24 (12): 1788- 1792.
doi: 10.1109/LSP.2016.2637355
|
6 |
CHEN Z Y, SUN X, WANG L, et al. A deep visual correspondence embedding model for stereo matching costs[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 972-980.
|
7 |
GÜNEY F, GEIGER A. Displets: resolving stereo ambiguities using object knowledge[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 4165-4175.
|
8 |
XIAO J S, TIAN H, ZOU W T, et al. Stereo matching based on convolutional neural network. Acta Optica Sinica, 2018, 38 (8): 0815017.
doi: 10.3788/AOS201838.0815017
|
9 |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 66-75.
|
10 |
赵倩. 基于3D卷积模块和视差分割的立体匹配方法. 电子测量技术, 2021, 44 (18): 72- 77.
URL
|
|
ZHAO Q. Research of stereo matching method based on 3D convolution module and parallax segmentation. Electronic Measurement Technology, 2021, 44 (18): 72- 77.
URL
|
11 |
CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5410-5418.
|
12 |
黄怡洁, 朱江平, 杨善敏. 基于注意力机制的立体匹配算法. 计算机应用与软件, 2022, 39 (7): 235-240, 309
URL
|
|
HUANG Y J, ZHU J P, YANG S M. Stereo matching algorithm based on attention mechanism. Computer Applications and Software, 2022, 39 (7): 235-240, 309
URL
|
13 |
|
14 |
刘侍刚, 张同, 杨建功, 等. 递进式空洞残差深度双目立体匹配网络. 西安电子科技大学学报, 2022, 32 (5): 175- 180.
URL
|
|
LIU S G, ZHANG T, YANG J G, et al. Progressive dialtion residual network for deep binocular stereo matching. Journal of Xidian University, 2022, 32 (5): 175- 180.
URL
|
15 |
LIANG Z F, GUO Y L, FENG Y L, et al. Stereo matching using multi-level cost volume and multi-scale feature constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (1): 300- 315.
doi: 10.1109/TPAMI.2019.2928550
|
16 |
YAO C T, JIA Y D, DI H J, et al. A decomposition model for stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 6087-6096.
|
17 |
张锡英, 王厚博, 边继龙. 多成本融合的立体匹配网络. 计算机工程, 2022, 48 (2): 186- 193.
URL
|
|
ZHANG X Y, WANG H B, BIAN J L. Multi-cost fusion stereo matching network. Computer Engineering, 2022, 48 (2): 186- 193.
URL
|
18 |
XU G W, CHENG J D, GUO P, et al. Attention concatenation volume for accurate and efficient stereo matching[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2022: 12971-12980.
|
19 |
CHENG X L, ZHONG Y R, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 22158-22169.
|
20 |
LIU B Y, YU H M, LONG Y Q. Local similarity pattern and cost self-reassembling for deep stereo matching networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (2): 1647- 1655.
doi: 10.1609/aaai.v36i2.20056
|
21 |
何培玉, 黄劲松. 联合语义代价体的立体匹配网络改进方法. 导航定位学, 2022, 31 (6): 157- 164.
|
|
HE P Y, HUANG J S. An improved method of stereo matching network combined with semantic cost volume. Journal of Navigation and Positioning, 2022, 31 (6): 157- 164.
|
22 |
刘振国, 李钊, 宋滕滕, 等. 结合可变形卷积与双边网格的立体匹配网络. 计算机工程, 2022, 48 (12): 241-247, 254
URL
|
|
LIU Z G, LI Z, SONG T T, et al. Stereo matching network combining deformable convolution and bilateral grid. Computer Engineering, 2022, 48 (12): 241-247, 254
URL
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
24 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 448-456.
|
25 |
|
26 |
|
27 |
王玉锋, 王宏伟, 刘宇, 等. 基于多任务学习的立体匹配算法. 激光与光电子学进展, 2021, 58 (4): 0415010.
URL
|
|
WANG Y F, WANG H W, LIU Y, et al. Stereo matching algorithm based on multi-task learning. Laser & Optoelectronics Progress, 2021, 58 (4): 0415010.
URL
|
28 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 1440-1448.
|
29 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving?The KITTI vision benchmark suite[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2012: 3354-3361.
|
30 |
MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3061-3070.
|
31 |
|
32 |
王玉锋, 王宏伟, 刘宇, 等. 渐进细化的实时立体匹配算法. 光学学报, 2020, 40 (9): 0915002.
URL
|
|
WANG Y F, WANG H W, LIU Y, et al. Progressive thinning real-time stereo matching algorithm. Acta Optica Sinica, 2020, 40 (9): 0915002.
URL
|