[1] BOUBICHE D E, PATHAN A S K, LLORET J, et al.Advanced industrial wireless sensor networks and intelligent IoT[J].IEEE Communications Magazine, 2018, 56(2):14-15. [2] FUNG B C M, WANG K, CHEN R, et al.Privacy-preserving data publishing:a survey of recent developments[J].ACM Computing Surveys, 2010, 42(4):1-53. [3] 陈发堂, 赵昊明, 吴晓龙, 等.移动网络用户隐私与信息安全研究[J].南京邮电大学学报(自然科学版), 2020, 40(2):35-40. CHEN F T, ZHAO H M, WU X L, et al.Privacy and information security of mobile network users[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2020, 40(2):35-40.(in Chinese) [4] 刘俊旭, 孟小峰.机器学习的隐私保护研究综述[J].计算机研究与发展, 2020, 57(2):346-362. LIU J X, MENG X F.Survey on privacy-preserving machine learning[J].Journal of Computer Research and Development, 2020, 57(2):346-362.(in Chinese) [5] YANG Q, LIU Y, CHEN T, et al.Federated machine learning:concept and applications[J].ACM Transactions on Intelligent Systems and Technology, 2019, 10(2):1-19. [6] LIU S, QU Q, CHEN L, et al.SMC:a practical schema for privacy-preserved data sharing over distributed data streams[J].IEEE Transactions on Big Data, 2015, 1(2):68-81. [7] MCMAHAN H B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[EB/OL].[2021-01-05].https://arxiv.org/pdf/1602.05629.pdf. [8] CORTES J, DULLERUD G E, HAN S, et al.Differential privacy in control and network systems[C]//Proceeding of the 55th Conference on Decision and Control.Washington D.C., USA:IEEE Press, 2016:4252-4272. [9] LINDELL Y.General composition and universal composability in secure multi-party computation[J].Journal of Cryptology, 2009, 22:395-428. [10] WANG Z, SONG M, ZHANG Z, et al.Beyond inferring class representatives:user-level privacy leakage from federated learning[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2019:1-10. [11] KONEN J, MCMAHAN H B, YU F X, et al.Federated learning:strategies for improving communication efficiency[EB/OL].[2021-01-03].https://arxiv.org/pdf/1610.05492.pdf. [12] TRAN N H, BAO W, ZOMAYA A, et al.Federated learning over wireless networks:optimization model design and analysis[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2019:1387-1395. [13] JIN R, HE X, DAI H.On the design of communication efficient federated learning over wireless networks[EB/OL].[2021-01-05].https://arxiv.org/abs/2004.07351v1. [14] NADIGER C, KUMAR A, ABDELHAK S.Federated reinforcement learning for fast personalization[C]//Proceedings of the 2nd International Conference on Artificial Intelligence and Knowledge Engineering.Washington D.C., USA:IEEE Press, 2019:123-127. [15] CONWAY-JONES D, TUOR T, WANG S, et al.Demonstration of federated learning in a resource-constrained networked environment[C]//Proceedings of IEEE International Conference on Smart Computing.Washington, D.C., USA:IEEE Press, 2019:484-486. [16] LI H, HAN T.An end-to-end encrypted neural network for gradient updates transmission in federated learning[C]//Proceedings of IEEE Conference on Data Compression.Washington D.C., USA:IEEE Press, 2019:589-592. [17] 杨庚, 王周生.联邦学习中的隐私保护研究进展[J].南京邮电大学学报(自然科学版), 2020, 40(5):204-214. YANG G, WANG Z S.Survey on privacy preservation in federated learning[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2020, 40(5):204-214.(in Chinese) [18] ZHANG Y, XIONG Z H, NIYATO D, et al.Toward a perpetual IoT system:wireless power management policy with threshold structure[J].IEEE Internet of Things Journal, 2018, 5(6):5254-5270. [19] LU X, WANG P, NIYATO D, et al.Wireless networks with RF energy harvesting:a contemporary survey[J].IEEE Communications Surveys and Tutorials, 2015, 17(2):757-789. [20] ZHU C, LEUNG V C M, SHU L, et al.Green Internet of Things for smart world[J].IEEE Access, 2015, 3:2151-2162. [21] ANH T T, LUONG N C, NIYATO D, et al.Efficient training management for mobile crowd-machine learning:a deep reinforcement learning approach[J].IEEE Wireless Communications Letters, 2019, 8(5):1345-1348. [22] ZHANG C, UENG Y, STUDER C, et al.Artificial intelligence for 5G and beyond 5G:implementations, algorithms, and optimizations[J].IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(2):149-163. [23] MOZAFFARI M, SAAD W, BENNIS M, et al.Optimal transport theory for cell association in UAV-enabled cellular networks[J].IEEE Communications Letters, 2017, 21(9):2053-2056. [24] DUAN W, GU J, WEN M, et al.Emerging technologies for 5G-IoV networks:applications, trends and opportunities[J].IEEE Network, 2020, 34(5):283-289. [25] ZENG Y, ZHANG R, LIM T J.Wireless communications with unmanned aerial vehicles:opportunities and challenges[J].IEEE Communications Magazine, 2016, 54(5):36-42. [26] HE D, CHAN S, GUIZANI M.Communication security of unmanned aerial vehicles[J].IEEE Wireless Communications, 2017, 24(4):134-139. [27] 周志华.机器学习[M].北京:清华大学出版社, 2015. ZHOU Z H.Machine learning[M].Beijing:Tsinghua University Press, 2015.(in Chinese) [28] LIAO J, SANKAR L, TAN V Y F, et al.Hypothesis testing under mutual information privacy constraints in the high privacy regime[J].IEEE Transactions on Information Forensics and Security, 2018, 13(4):1058-1071. [29] LUONG N C, HOANG D T, GONG S, et al.Applications of deep reinforcement learning in communications and networking:a survey[J].IEEE Communications Surveys and Tutorials, 2019, 21(4):3133-3174. |