作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (1): 188-196,203. doi: 10.19678/j.issn.1000-3428.0060825

• 移动互联与通信技术 • 上一篇    下一篇

基于联邦学习的无线网络节点能量与信息管理策略

杨文琦1, 章阳1,2, 聂江天3, 杨和林3, 康嘉文3, 熊泽辉4   

  1. 1. 武汉理工大学 计算机科学与技术学院, 武汉 430063;
    2. 武汉理工大学 交通物联网技术湖北省重点实验室, 武汉 430063;
    3. 南洋理工大学 计算机科学与工程学院, 新加坡 639798;
    4. 新加坡科技设计大学 信息系统技术与设计学院, 新加坡 487372
  • 收稿日期:2021-02-07 修回日期:2021-04-23 发布日期:2021-05-08
  • 作者简介:杨文琦(1996-),女,硕士研究生,主研方向为移动与分布式系统;章阳,副教授、博士;聂江天、杨和林、康嘉文,博士后;熊泽辉,助理教授、博士。
  • 基金资助:
    国家自然科学基金(62071343)。

Energy and Information Management Strategy Based on Federated Learning for Wireless Network Nodes

YANG Wenqi1, ZHANG Yang1,2, NIE Jiangtian3, YANG Helin3, KANG Jiawen3, XIONG Zehui4   

  1. 1. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China;
    2. Hubei Key Laboratory of Transportation Internet of Things, Wuhan University of Technology, Wuhan 430063, China;
    3. School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
    4. Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore 487372, Singapore
  • Received:2021-02-07 Revised:2021-04-23 Published:2021-05-08

摘要: 在无线通信网络环境中,分布式客户端节点在用户隐私保护、数据传输效率、能量利用效率之间较难实现平衡。针对该问题,提出一种结合联邦学习与传统集中式学习的能量与信息管理优化策略。以覆盖性强、适用性广的移动信息采集设备作为学习服务器,将分布分散、资源受限的客户端节点作为学习参与者,通过构建马尔科夫决策模型分析客户端节点在移动信息采集过程中的状态变化和行为模式,同时采用值迭代算法和深度强化学习算法对该模型进行近似求解,获得客户端节点最优的信息传输与能量管理组合策略。仿真结果表明,相比MDP、GRE、RAN策略,该策略的长期效用较高且数据延迟较小,可实现客户端节点在信息传输过程中的数据隐私性、数据可用性与能量消耗之间的最优平衡。

关键词: 联邦学习, 无线通信网络, 信息传输, 能量管理, 马尔科夫决策过程, 深度强化学习

Abstract: To balance user privacy protection, data transmission efficiency, and energy utilization efficiency of distributed user nodes in wireless communication networks, a federated learning-based strategy for optimizing information transmission and energy management is established.The mobile information collection devices with extended coverage and applicability are deployed as servers, and the distributed user nodes with limited resources are deployed as workers.Then a Markov decision model is built to analyze the status changes and behavior patterns of nodes during mobile information collection.The Markov model is approximately solved by using a value iteration algorithm and deep reinforcement learning algorithm, so an optimal strategy for information transmission and energy management for user nodes is obtained.Simulation results show that compared with MDP, GRE and RAN strategies, the proposed strategy has better long-term utility and less data delay.It can achieve an optimal balance between data privacy, data availability and energy consumption during information transmission of user nodes.

Key words: federated learning, wireless communication network, information transmission, energy management, Markov Decision Process(MDP), Deep Reinforcement Learning(DRL)

中图分类号: