[1] BANARESCU L, BONIAL C, CAI S, et al.Abstract meaning representation for sembanking[C]//Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse.Washington D.C., USA:IEEE Press, 2013:178-186. [2] XU D, LI J, ZHU M, et al.Improving AMR parsing with squence-to-squence pre-training[C]//Proceeding of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:2501-2511. [3] TAMCHYNA A, QUIRK C, GALLEY M.A discriminative model for semantics-to-string translation[C]//Proceedings of the 1st Workshop on Semantics-Driven Statistical Machine Translation.Stroudsburg, USA:Association for Computational Linguistics, 2015:30-36. [4] MITRA A, BARAL C.Addressing a question answering challenge by combining statistical methods with inductive rule learning and reasoning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2016:2779-2785. [5] FLANIGAN J, DYER C, SMITH N A, et al.Generation from abstract meaning representation using tree transducers[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg, USA:Association for Computational Linguistics, 2016:731-739. [6] SONG L F, PENG X C, ZHANG Y, et al.AMR-to-text generation with synchronous node replacement grammar[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2017:7-13. [7] POURDAMGHANI N, KNIGHT K, HERMJAKOB U.Generating English from abstract meaning representations[C]//Proceedings of the 9th International Natural Language Generation Conference.Stroudsburg, USA:Association for Computational Linguistics, 2016:21. [8] KONSTAS I, IYER S, YATSKAR M, et al.Neural AMR:sequence-to-sequence models for parsing and generation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2017:146-157. [9] CAO K, CLARK S.Factorising AMR generation through syntax[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2019:2157-2163. [10] ZHU J, LI J H, ZHU M H, et al.Modeling graph structure in transformer for better AMR-to-text generation[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:5462-5471. [11] SONG L F, WANG A T, SU J S, et al.Structural information preserving for graph-to-text generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:7987-7998. [12] WANG T, WAN X, YAO S.Better AMR-To-Text generation with graph structure reconstruction[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2020:3919-3925. [13] JIN L S, GILDEA D.Generalized shortest-paths encoders for AMR-to-text generation[C]//Proceedings of the 28th International Conference on Computational Linguistics.Stroudsburg, USA:International Committee on Computational Linguistics, 2020:2004-2013. [14] FAN A, GARDENT C.Multilingual AMR-to-text generation[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2020:2889-2901. [15] BECK D, HAFFARI G, COHN T.Graph-to-sequence learning using gated graph neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2018:273-283. [16] DAMONTE M, COHEN S B.Structural neural encoders for AMR-to-text generation[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2019:3649-3658. [17] ZHAO Y B, CHEN L, CHEN Z, et al.Line graph enhanced AMR-to-text generation with mix-order graph attention networks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:732-741. [18] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Berlin, Germany:Springer, 2017:6000-6010. [19] SENNRICH R, HADDOW B, BIRCH A.Improving neural machine translation models with monolingual data[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2016:7-12. [20] ARTETXE M, LABAKA G, AGIRRE E, et al.Unsupervised neural machine translation[C]//Proceedings of the 6th International Conference on Learning Representations.Vancouver, Canada:ICLR, 2018:1-5. [21] FADAEE M, BISAZZA A, MONZ C.Data augmentation for low-resource neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2017:567-573. [22] GAO F, ZHU J H, WU L J, et al.Soft contextual data augmentation for neural machine translation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2019:5539-5544. [23] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2019:4171-4186. [24] SENNRICH R, HADDOW B, BIRCH A.Neural machine translation of rare words with subword units[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2016:1715-1725. [25] GE D L, LI J H, ZHU M H, et al.Modeling source syntax and semantics for neural AMR parsing[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Stockholm, Sweden:IJCAI, 2019:4975-4981. [26] VINCENT P, LAROCHELLE H, LAJOIE I, et al.Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research, 2010, 11:3371-3408. [27] 徐东钦, 李军辉, 朱慕华, 等.基于多任务预训练的AMR文本生成研究[J].软件学报, 2021, 32(10):3036-3050. XU D Q, LI J H, ZHU M H, et al.Improving AMR-to-text generation with multi-task pre-training[J].Journal of Software, 2021, 32(10):3036-3050.(in Chinese) [28] PAPINENI K, ROUKOS S, WARD T, et al.BLEU:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, USA:Association for Computational Linguistics, 2002:311-318. [29] BANERJEE S, LAVIE A.METEOR:an automatic metric for MT evaluation with improved correlation with human judgments[C]//Proceedings of 2005 ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization.Stroudsburg, USA:Association for Computational Linguistics, 2005:65-72. [30] POPOVIĆ M.chrF++:words helping character n-grams[C]//Proceedings of the 2nd Conference on Machine Translation.Stroudsburg, USA:Association for Computational Linguistics, 2017:612-618. [31] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2020-10-10].https://arxiv.org/abs/1412.6980. [32] CHENG Y, TU Z P, MENG F D, et al.Towards robust neural machine translation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2018:1756-1766. |