[1] CHEN T W, WONG R C W.Handling information loss of graph neural networks for session-based recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2020:1172-1180. [2] CHENG Z Y, SHEN J L, ZHU L, et al.Exploiting music play sequence for music recommendation[C]//Proceedings of IEEE IJCAIʼ17.Washington D.C., USA:IEEE Press, 2017:3654-3660. [3] QIU R H, LI J J, HUANG Z, et al.Rethinking the item order in session-based recommendation with graph neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:579-588. [4] WU S, TANG Y Y, ZHU Y Q, et al.Session-based recommendation with graph neural networks[EB/OL].[2021-02-20].https://arxiv.org/abs/1811.00855. [5] 王健宗, 孔令炜, 黄章成, 等.图神经网络综述[J].计算机工程, 2021, 47(4):1-12. WANG J Z, KONG L W, HUANG Z C, et al.Survey of graph neural network[J].Computer Engineering, 2021, 47(4):1-12.(in Chinese) [6] XU C F, ZHAO P P, LIU Y C, et al.Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao, China:[s.n.], 2019:3940-3946. [7] DAVIDSON J, LIEBALD B, LIU J N, et al.The YouTube video recommendation system[C]//Proceedings of the 4th ACM Conference on Recommender Systems.New York, USA:ACM Press, 2010:293-296. [8] DIAS R, FONSECA M J.Improving music recommendation in session-based collaborative filtering by using temporal context[C]//Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence.Washington D.C., USA:IEEE Press, 2013:783-788. [9] PARK S E, LEE S, LEE S G.Session-based collaborative filtering for predicting the next song[C]//Proceedings of the 1st ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engineering.Washington D.C., USA:IEEE Press, 2011:353-358. [10] SHANI G, BRAFMAN R I, HECKERMAN D.An MDP-based recommender system[EB/OL].[2021-02-20].https://arxiv.org/ftp/arxiv/papers/1301/1301.0600.pdf. [11] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L.Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th IEEE Inter-national Conference on World Wide Web.Washington D.C., USA:IEEE Press, 2010:811-820. [12] CHEN S, MOORE J L, TURNBULL D, et al.Playlist prediction via metric embedding[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2012:714-722. [13] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al.Session-based recommendations with recurrent neural networks[EB/OL].[2021-02-20].https://arxiv.org/abs/1511.06939. [14] LI J, REN P J, CHEN Z M, et al.Neural attentive session-based recommendation[C]//Proceedings of 2017 ACM Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:1419-1428. [15] CHEN T W, WONG R C W.Session-based recommendation with local invariance[C]//Proceedings of 2019 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2019:994-999. [16] REN P J, CHEN Z M, LI J, et al.RepeatNet:a repeat aware neural recommendation machine for session-based recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2019:4806-4813. [17] SONG J, SHEN H, OU Z J, et al.ISLF:interest shift and latent factors combination model for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao, China:[s.n.], 2019:5765-5771. [18] 呼延康, 樊鑫, 余乐天, 等.图神经网络回归的人脸超分辨率重建[J].软件学报, 2018, 29(4):914-925. HUYAN K, FAN X, YU L T, et al.Graph based neural network regression strategy for facial image super-resolution[J].Journal of Software, 2018, 29(4):914-925.(in Chinese) [19] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2021-02-20].https://arxiv.org/abs/1609.02907. [20] WU F, ZHANG T Y, SOUZA A H J, et al.Simplifying graph convolutional networks[EB/OL].[2021-02-20].https://arxiv.org/abs/1902.07153. [21] LI Y J, TARLOW D, BROCKSCHMIDT M, et al.Gated graph sequence neural networks[EB/OL].[2021-02-20].https://arxiv.org/abs/1511.05493. [22] YU F, ZHU Y Q, LIU Q, et al.TAGNN:target attentive graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2020:1921-1924. [23] LIU Q, ZENG Y F, MOKHOSI R, et al.STAMP:short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:1831-1839. [24] TAN Y K, XU X X, LIU Y.Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st IEEE Workshop on Deep Learning for Recommender Systems.Washington D.C., USA:IEEE Press, 2016:17-22. [25] SARWAR B, KARYPIS G, KONSTAN J, et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web.Washington D.C., USA:IEEE Press, 2001:285-295. [26] RENDLE S, FREUDENTHALER C, GANTNER Z, et al.BPR:Bayesian personalized ranking from implicit feedback[EB/OL].[2021-02-20].https://arxiv.org/abs/1205.2618. |