作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (4): 213-222. doi: 10.19678/j.issn.1000-3428.0061039

• 图形图像处理 • 上一篇    下一篇

面向图像篡改取证的多特征融合U形深度网络

路东生, 张玉金, 党良慧   

  1. 上海工程技术大学 电子电气工程学院, 上海 201620
  • 收稿日期:2021-03-08 修回日期:2021-05-14 发布日期:2021-05-18
  • 作者简介:路东生(1996—),男,硕士研究生,主研方向为图像处理、深度学习、图像篡改取证;张玉金(通信作者),副教授、博士;党良慧,硕士研究生。
  • 基金资助:
    上海市科委重点项目(18511101600);上海市自然科学基金(17ZR1411900)。

Multi-Feature Fusion U-structure Deep Network for Image Tempering Forensics

LU Dongsheng, ZHANG Yujin, DANG Lianghui   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2021-03-08 Revised:2021-05-14 Published:2021-05-18

摘要: 随着图像篡改工具的智能化发展,图像篡改不再局限于拼接、移除等某一具体的类型,往往包含多种篡改类型及其组合操作,使得图像篡改取证工作更具挑战性。提出一种端到端的多特征融合U形深度网络,利用编解码网络提取篡改区域与真实区域之间的对比度差异、边缘差异等篡改痕迹,并使用富隐写模型卷积层获取伪造图像的噪声分布不规律信息,从而在无预处理的情况下实现可疑区域的检测并分割出高置信度的篡改区域。在此基础上,使用特征提取模块获取融合的篡改特征,在融合定位模块中利用分级监督策略融合不同分辨率提取的篡改特征,以准确定位篡改区域,实现篡改区域检测与像素级的分割。实验结果表明,基于所提网络的图像篡改取证方法在NIST16和CASIA数据库上的F1值分别为0.841和0.605,与基于MFCN、RGB-N、MANTRA-net等网络的图像篡改取证方法相比,有较优的检测性能和较高的实时性,且对JPEG压缩、缩放等处理具有更强的鲁棒性。

关键词: 图像篡改取证, 深度神经网络, 编解码网络, 噪声信息, 富隐写模型

Abstract: With the intelligent development of image tampering tools, the types of image tampering are not limited to a specific type such as splicing and remove, but often includes multiple types of tampering and their combined manipulability, making image forensics more challenging.To solve the complex image tampering detection, an end-to-end Multi-Feature Fusion U-Structure deep network for image forgeries detection (MFF-US net).Using the encoder-decoder architecture to extract the tampering traces, which include the contrast difference, edge and other differences between the manipulated and non-manipulated regions, and using the convolutional layer of the rich models steganalysis to obtain the irregular information of noise distribution on the forgery image, detection of suspicious areas and segmentation of tampered areas with high confidence without pre-processing.On this basis, the feature extraction module is used to obtain the fused tamper features.In the fusion location module, the hierarchical supervision strategy is used to fuse the tamper features extracted from different resolutions, so as to accurately locate the tamper area and realize the tamper area detection and pixel level segmentation.Experiments show the F1 values of the proposed method in the NIST16 and CASIA databases are 0.841 and 0.605, respectively.Compared with the existing MFCN、RGB-N、MANTRA-net mainstream method, this method can not only achieve better detection performance and real-time performance, but also has strong robustness to JPEG compression and post-scaling processing.

Key words: image tampering forensics, deep neural network, encoder-decoder network, noise information, rich steganography model

中图分类号: