[1] IDREES H, SOOMRO K, SHAH M.Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10):1986-1998. [2] OJALA T, PIETIKAINEN M, MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [3] CHAN A B, VASCONCELOS N.Bayesian poisson regression for crowd counting[C]//Proceedings of the 12th International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2009:545-551. [4] 冯兴杰, 张乐, 曾云泽.基于多注意力CNN的问题相似度计算模型[J].计算机工程, 2019, 45(9):284-290. FENG X J, ZHANG L, ZENG Y Z.Question similarity calculation model based on multi-attention CNN[J].Computer Engineering, 2019, 45(9):284-290.(in Chinese) [5] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1800-1807. [6] ZHANG C, LI H S, WANG X G, et al.Cross-scene crowd counting via deep convolutional neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:833-841. [7] ZHANG Y Y, ZHOU D S, CHEN S Q, et al.Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:589-597. [8] SAM D B, SURYA S, BABU R V.Switching convolutional neural network for crowd counting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4031-4039. [9] LI Y H, ZHANG X F, CHEN D M.CSRNet:dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:1091-1100. [10] LIU W Z, SALZMANN M, FUA P.Context-aware crowd counting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5094-5103. [11] JIANG X H, ZHANG L, XU M L, et al.Attention scaling for crowd counting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4705-4714. [12] ZHU L, ZHAO Z J, LU C, et al.Dual path multi-scale fusion networks with attention for crowd counting[EB/OL].[2021-09-06].https://arxiv.org/abs/1902.01115. [13] 马皓, 殷保群, 彭思凡.基于特征金字塔网络的人群计数算法[J].计算机工程, 2019, 45(7):203-207. MA H, YIN B Q, PENG S F.Crowd counting algorithm based on feature pyramid network[J].Computer Engineering, 2019, 45(7):203-207.(in Chinese) [14] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [15] WANG Q L, WU B G, ZHU P F, et al.ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11531-11539. [16] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [17] 翟强, 王陆洋, 殷保群, 等.基于尺度自适应卷积神经网络的人群计数算法[J].计算机工程, 2020, 46(2):250-254, 261. ZHAI Q, WANG L Y, YIN B Q, et al.Crowd counting algorithm based on scale adaptive convolutional neural network[J].Computer Engineering, 2020, 46(2):250-254, 261.(in Chinese) [18] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:7132-7141. [19] IDREES H, SALEEMI I, SEIBERT C, et al.Multi-source multi-scale counting in extremely dense crowd images[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:2547-2554. [20] IDREES H, TAYYAB M, ATHREY K, et al.Composition loss for counting, density map estimation and localization in dense crowds[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:544-559. [21] CAO X K, WANG Z P, ZHAO Y Y, et al.Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of 2018 European Conference on Computer Vision.Berlin, Germany:Springer, 2018:757-773. [22] ZHANG A R, SHEN J Y, XIAO Z H, et al.Relational attention network for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6787-6796. [23] TIAN Y K, LEI Y M, ZHANG J P, et al.PaDNet:pan-density crowd counting[J].IEEE Transactions on Image Processing, 2020, 29:2714-2727. [24] JIANG X H, ZHANG L, ZHANG T Z, et al.Density-aware multi-task learning for crowd counting[J].IEEE Transactions on Multimedia, 2021, 23:443-453. [25] YI Q S, LIU Y X, JIANG A W, et al.Scale-aware network with regional and semantic attentions for crowd counting under cluttered background[EB/OL].[2021-08-01].https://arxiv.org/abs/2101.01479. |