[1] HUANG X M, YU R, YE D D, et al.Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing[J].IEEE Transactions on Vehicular Technology, 2021, 70(4):3773-3787. [2] LIM W Y B, HUANG J Q, XIONG Z H, et al.Towards federated learning in UAV-enabled Internet of vehicles:a multi-dimensional contract-matching approach[J].IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8):5140-5154. [3] GRIGORESCU S, TRASNEA B, COCIAS T, et al.A survey of deep learning techniques for autonomous driving[J].Journal of Field Robotics, 2020, 37(3):362-386. [4] MUHAMMAD K, ULLAH A, LLORET J, et al.Deep learning for safe autonomous driving:current challenges and future directions[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7):4316-4336. [5] WU M Q, HUANG X M, TAN B H, et al.Hybrid sensor network with edge computing for AI applications of connected vehicles[J].Journal of Internet Technology, 2020, 21:1503-1516. [6] LIU L, CHEN C, PEI Q Q, et al.Vehicular edge computing and networking:a survey[J].Mobile Networks and Applications, 2021, 26(3):1145-1168. [7] LIU Y J, WANG S G, ZHAO Q L, et al.Dependency-aware task scheduling in vehicular edge computing[J].IEEE Internet of Things Journal, 2020, 7(6):4961-4971. [8] ZHANG J, LETAIEF K B.Mobile edge intelligence and computing for the Internet of vehicles[J].Proceedings of the IEEE, 2020, 108(2):246-261. [9] KANG Y P, HAUSWALD J, GAO C, et al.Neurosurgeon:collaborative intelligence between the cloud and mobile edge[J].ACM SIGPLAN Notices, 2017, 52(4):615-629. [10] LI E, ZHOU Z, CHEN X.Edge intelligence:on-demand deep learning model co-inference with device-edge synergy[C]//Proceedings of 2018 Workshop on Mobile Edge Communications.New York, USA:ACM Press, 2018:31-36. [11] WANG Q, LI Z Y, NAI K, et al.Dynamic resource allocation for jointing vehicle-edge deep neural network inference[J].Journal of Systems Architecture, 2021, 117:102133. [12] TAN X R, LI H J, WANG L M, et al.End-edge coordinated inference for real-time BYOD malware detection using deep learning[C]//Proceedings of IEEE Wireless Communications and Networking Conference.Washington D.C., USA:IEEE Press, 2020:1-6. [13] LI E, ZENG L K, ZHOU Z, et al.Edge AI:on-demand accelerating deep neural network inference via edge computing[J].IEEE Transactions on Wireless Communications, 2020, 19(1):447-457. [14] HE Z C, ZHANG T W, LEE R B.Model inversion attacks against collaborative inference[C]//Proceedings of the 35th Annual Computer Security Applications Conference.New York, USA:ACM Press, 2019:148-162. [15] SHI C S, CHEN L X, SHEN C, et al.Privacy-aware edge computing based on adaptive DNN partitioning[C]//Proceedings of IEEE Global Communications Conference.Washington D.C., USA:IEEE Press, 2019:1-6. [16] HE Z C, ZHANG T W, LEE R B.Attacking and protecting data privacy in edge-cloud collaborative inference systems[J].IEEE Internet of Things Journal, 2021, 8(12):9706-9716. [17] RYU J, ZHENG Y F, GAO Y S, et al.Can differential privacy practically protect collaborative deep learning inference for the Internet of Things?[EB/OL].[2021-08-17].https://arxiv.org/abs/2104.03813. [18] ABADI M, CHU A, GOODFELLOW I, et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.New York, USA:ACM Press, 2016:308-318. [19] ZHAO P, ZHANG G L, WAN S H, et al.A survey of local differential privacy for securing Internet of vehicles[J].The Journal of Supercomputing, 2020, 76(11):8391-8412. [20] 郝晨艳, 彭长根, 张盼盼.重复攻击下差分隐私保护参数ε的选取方法[J].计算机工程, 2018, 44(7):145-149. HAO C Y, PENG C G, ZHANG P P.Selection method of differential privacy protection parameter ε under repeated attack[J].Computer Engineering, 2018, 44(7):145-149.(in Chinese) [21] WU M Q, YE D D, DING J H, et al.Incentivizing differentially private federated learning:a multidimensional contract approach[J].IEEE Internet of Things Journal, 2021, 8(13):10639-10651. [22] 王丹, 龙士工.权重社交网络隐私保护中的差分隐私算法[J].计算机工程, 2019, 45(4):114-118. WANG D, LONG S G.Differential privacy algorithm for privacy protection in weighted social network[J].Computer Engineering, 2019, 45(4):114-118.(in Chinese) [23] NIU B, CHEN Y H, WANG B Y, et al.AdaPDP:adaptive personalized differential privacy[C]//Proceedings of IEEE Conference on Computer Communications.Washington D.C., USA:IEEE Press, 2021:1-10. [24] YIN S H, DENG J C, ZHANG D W, et al.Traffic sign recognition based on deep convolutional neural network[M].Berlin, Germany:Springer, 2017. [25] 雷蕾, 郭东恩, 靳峰.基于谱归一化条件生成对抗网络的图像修复算法[J].计算机工程, 2021, 47(1):230-238. LEI L, GUO D E, JIN F.Image inpainting algorithm based on conditional generative adversarial network with spectral normalization[J].Computer Engineering, 2021, 47(1):230-238.(in Chinese) |