[1] WU Z, PAN S, LONG G, et al.Graph WaveNet for deep spatial-temporal graph modeling[EB/OL].[2022-01-02].https://arxiv.org/abs/1906.00121. [2] YU B, YIN H, ZHU Z.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[EB/OL].[2022-01-02].https://arxiv.org/abs/1709.04875. [3] LI Y, YU R, SHAHABI C, et al.Diffusion convolutional recurrent neural network:data-driven traffic forecasting[EB/OL].[2022-01-02].https://arxiv.org/abs/1707.01926. [4] COVERT I, KRISHNAN B, NAJM I, et al.Temporal graph convolutional networks for automatic seizure detection[EB/OL].[2022-01-02].https://arxiv.org/abs/1905.01375. [5] MESZLÉNYI R J, BUZA K, VIDNYÁNSZKY Z.Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture[J].Frontiers in Neuroinformatics, 2017, 11:61. [6] JI S W, XU W, YANG M, et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [7] YAN S J, XIONG Y J, LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2018:1-10. [8] GAO Q, ZHOU F, TRAJCEVSKI G, et al.Predicting human mobility via variational attention[C]//Proceedings of World Wide Web Conference.New York, USA:ACM Press, 2019:2750-2756. [9] FENG J, LI Y, ZHANG C, et al.DeepMove:predicting human mobility with attentional recurrent networks[C]//Proceedings of World Wide Web Conference.New York, USA:ACM Press, 2018:1459-1468. [10] HUANG Y F, BI H K, LI Z X, et al.STGAT:modeling spatial-temporal interactions for human trajectory prediction[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:6271-6280. [11] GUO S N, LIN Y F, FENG N, et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2019:922-929. [12] SONG C, LIN Y F, GUO S N, et al.Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:34(1):914-921. [13] LI S W, GE L, LIN Y Q, et al.Adaptive spatial-temporal fusion graph convolutional networks for traffic flow forecasting[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C., USA:IEEE Press, 2022:1-8. [14] FANG Z, LONG Q Q, SONG G J, et al.Spatial-temporal graph ODE networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2021:364-373. [15] BAI L, YAO L N, LI C, et al.Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2020:17804-17815. [16] ZHOU H Y, ZHANG S H, PENG J Q, et al.Informer:beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2021:11106-11115. [17] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:6000-6010. [18] KITAEV N, KAISER Ł, LEVSKAYA A.Reformer:the efficient transformer[EB/OL].[2022-01-02].https://arxiv.org/abs/2001.04451. [19] WANG S N, LI B Z, KHABSA M, et al.Linformer:self-attention with linear complexity[EB/OL].[2022-01-02].https://arxiv.org/abs/2006.04768. [20] TSAI Y H H, BAI S J, YAMADA M, et al.Transformer dissection:a unified understanding of transformer's attention via the lens of kernel[EB/OL].[2022-01-02].https://arxiv.org/abs/1908.11775. [21] BA J L, KIROS J R, HINTON G E.Layer normalization[EB/OL].[2022-01-02].https://arxiv.org/abs/1607.06450. [22] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [23] CRYER J D.Time series analysis[M].Boston, USA:PWS-Kent Pub.Co., 1986. [24] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [25] KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S.Predict then propagate:graph neural networks meet personalized PageRank[EB/OL].[2022-01-02].https://arxiv.org/abs/1810.05997. |