作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (4): 108-113. doi: 10.19678/j.issn.1000-3428.0063731

• 人工智能与模式识别 • 上一篇    下一篇

一种基于时空稀疏注意力的时空图挖掘算法

谢毅1, 王强2, 李海宏2, 金诚2, 任洪润1, 薛雯1, 熊贇1   

  1. 1. 复旦大学 计算机科学技术学院 上海市数据科学重点实验室, 上海 200433;
    2. 上海市气象灾害防御技术中心, 上海 200030
  • 收稿日期:2022-01-10 修回日期:2022-05-02 发布日期:2023-04-07
  • 作者简介:谢毅(1994-),男,博士研究生,主研方向为数据挖掘、时序数据建模;王强,高级工程师、博士;李海宏、金诚,工程师、硕士;任洪润,博士研究生;薛雯,硕士研究生;熊贇,教授、博士。
  • 基金资助:
    国家自然科学基金(U1936213);上海市科委基金(19DZ1200802);上海市气象灾害防御技术中心业务型科研项目(ZFYW2020002)。

A Spatial-Temporal Graph Mining Algorithm Based on Spatial-Temporal Sparse Attention

XIE Yi1, WANG Qiang2, LI Haihong2, JIN Cheng2, REN Hongrun1, XUE Wen1, XIONG Yun1   

  1. 1. Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai 200433, China;
    2. Shanghai Center for Meteorological Disaster Prevention Technology, Shanghai 200030, China
  • Received:2022-01-10 Revised:2022-05-02 Published:2023-04-07

摘要: 当前用于时空图挖掘的算法通常基于专家预定义或者经过特征增强的静态图结构,这些静态的图结构往往依赖于主观先验知识构建,并且不包含时间动态性的变化。为完成自动获取时空图数据中动态图特征的任务,提出一种基于时空稀疏注意力的时空图挖掘算法(STSAN)。构造空间稀疏注意力层,通过对每个时间片上节点间的关系进行度量生成稀疏图,并在各个稀疏图结构上使用注意力机制完成节点空间(纵向)特征的提取。时间稀疏注意力层通过类似的方式完成节点时序(横向)特征的提取。在此基础上,将空间稀疏注意力层和时间稀疏注意力层堆叠为时空稀疏Transformer模块,完成时空依赖关系建模。实验结果表明,与DCRNN、STGCN等方法相比,该算法在2个公开的交通数据集上能够获得2.65%~16.35%的性能提升,将所提出的空间稀疏注意力层直接用于替换现有算法的空间特征模块,能够在原算法基础上获得平均3.18%~9.14%的性能提升。

关键词: 时空图, 稀疏注意力, 图结构, 时空依赖, 动态性

Abstract: Existing spatial-temporal graph mining algorithms are typically based on static graph structures, which are pre-defined by experts or constructed via feature augmentation.These static graph structures rely on subjective prior knowledge and are not easily adaptable to temporal dynamic changes.Thus, automatically extracting dynamic graph features from spatial-temporal graph data is challenging.Therefore, this study proposes a spatial-temporal graph mining algorithm based on a Spatial-Temporal Sparse Attention Network(STSAN).First, a spatial sparse attention layer is constructed by generating a sparse graph by determining the relationship between nodes at each time slice, and the attention mechanism is used on each sparse graph structure to extract the spatial(vertical) features of the nodes.Subsequently, the temporal sparse attention layer further extracts the temporal(horizontal) features of the nodes in a similar manner.Finally, the spatial-temporal dependency modeling is completed by stacking the spatial and temporal sparse attention layers in the spatial-Temporal sparse Transformer module.Experimental results demonstrate that, compared with DCRNN, STGCN algorithms, et al, STSAN can achieve performance improvements of 2.65%-16.35% on two public traffic flow datasets.The experiments also demonstrate that directly replacing the spatial feature capturing module of existing algorithms with the spatial sparse attention layer proposed in this study can achieve an average performance improvement of 3.18%-9.14% relative to the original algorithm.

Key words: spatial-temporal graph, sparse attention, graph structure, spatial-temporal dependence, dynamic

中图分类号: