1 |
李涓子, 侯磊. 知识图谱研究综述. 山西大学学报(自然科学版), 2017, 40 (3): 454- 459.
URL
|
|
LI J Z, HOU L. Reviews on knowledge graph research. Journal of Shanxi University(Natural Science Edition), 2017, 40 (3): 454- 459.
URL
|
2 |
CHEN Z, WANG Y H, ZHAO B, et al. Knowledge graph completion: a review. IEEE Access, 2020, 8, 192435- 192456.
doi: 10.1109/ACCESS.2020.3030076
|
3 |
JIANG K, WU D, JIANG H. FreebaseQA: a new factoid QA data set matching trivia-style question-answer pairs with Freebase[C]//Proceedings of North American Chapter of the Association for Computational Linguistics. Philadelphia, USA: Association for Computational Linguistics, 2019: 318-323.
|
4 |
AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a Web of open data[C]//Proceedings of International Semantic Web Conference, Asian Semantic Web Conference. Berlin, Germany: Springer, 2007: 722-735.
|
5 |
BOIŃSKI T, SZYMANSKI J, DUDEK B, et al. NLP questions answering using DBpedia and YAGO. Vietnam Journal of Computer Science, 2020, 7 (4): 339- 354.
doi: 10.1142/S2196888820500190
|
6 |
BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 615-620.
|
7 |
WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 968-977.
|
8 |
WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (12): 2724- 2743.
doi: 10.1109/TKDE.2017.2754499
|
9 |
WANG K, LIU Y, XU X J, et al. Enhancing knowledge graph embedding by composite neighbors for link prediction. Computing, 2020, 102 (12): 2587- 2606.
doi: 10.1007/s00607-020-00842-5
|
10 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
11 |
|
12 |
SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. [2022-07-12]. https://arxiv.org/abs/1902.10197.
|
13 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1-10.
|
14 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2181-2187.
|
15 |
JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 985-991.
|
16 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. New York, USA: ACM Press, 2011: 809-816.
|
17 |
NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1955-1961.
|
18 |
YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2022-07-12]. https://arxiv.org/abs/1412.6575.
|
19 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 2071-2080.
|
20 |
|
21 |
NGUYEN D Q, NGUYEN T D. A novel embedding model for knowledge base completion based on convolutional neural network[EB/OL]. [2022-07-12]. https://arxiv.org/abs/1712.02121.
|
22 |
NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2180-2189.
|
23 |
付林, 刘钊, 邱晨, 等. 基于特征联合与多注意力的实体关系链接. 计算机工程, 2022, 48 (8): 53- 61.
URL
|
|
FU L, LIU Z, QIU C, et al. Entity relation linking based on feature joint and multi-attention. Computer Engineering, 2022, 48 (8): 53- 61.
URL
|
24 |
TOUTANOVA K, CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 1499-1509.
|
25 |
|
26 |
ZHANG Z, ZHUANG F Z, ZHU H S, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 9612-9619.
|
27 |
WANG H W, REN H Y, LESKOVEC J. Relational message passing for knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2021: 1697-1707.
|
28 |
QIAO Z Y, NING Z Y, DU Y, et al. Context-enhanced entity and relation embedding for knowledge graph completion(student abstract)[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 15871-15872.
|
29 |
|
30 |
BENGIO Y, DUCHARME R, VINCENT P. A neural probabilistic language model[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2000: 932-938.
|
31 |
ZHANG Z Q, CAI J Y, ZHANG Y D, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3065-3072.
|
32 |
陈恒, 王思懿, 李冠宇, 等. 基于四元数胶囊网络的知识图谱补全模型. 计算机工程, 2022, 48 (2): 40-46, 64
URL
|
|
CHEN H, WANG S Y, LI G Y, et al. Knowledge graph completion model based on quaternion capsule network. Computer Engineering, 2022, 48 (2): 40-46, 64
URL
|