[1] GRUNER R L, VOMBERG A, HOMBURG C, et al.Supporting new product launches with social media communication and online advertising:sales volume and profit implications[J].Journal of Product Innovation Management, 2019, 36(2):172-195. [2] 许王昊, 肖秦琨.基于注意力机制的兴趣网络点击率预估模型[J].计算机工程, 2021, 47(1):101-108. XU W H, XIAO Q K.Click-through rate prediction model of interest network based on attention mechanism[J].Computer Engineering, 2021, 47(1):101-108.(in Chinese) [3] RENDLE S.Factorization machines[C]//Proceedings of 2010 IEEE International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2010:995-1000. [4] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].[2021-10-21].https://arxiv.org/abs/1301.3781. [5] YANG Y W.Click-through rate prediction in online advertising:a literature review[J].Information Processing & Management, 2022, 59(2):102853. [6] YANG H X.Targeted search and the long tail effect[J].The RAND Journal of Economics, 2013, 44(4):733-756. [7] PAN F Y, LI S K, AO X, et al.Warm up cold-start advertisements:improving CTR predictions via learning to learn ID embeddings[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2019:695-704. [8] FINN C, ABBEEL P, LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2017:1126-1135. [9] SAMEK W, MONTAVON G, LAPUSCHKIN S, et al.Explaining deep neural networks and beyond:a review of methods and applications[J].Proceedings of the IEEE, 2021, 109(3):247-278. [10] CHENG H T, KOC L, HARMSEN J, et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.Washington D.C., USA:IEEE Press, 2016:7-10. [11] HEATON J.An empirical analysis of feature engineering for predictive modeling[C]//Proceedings of SoutheastCon'16.Washington D.C., USA:IEEE Press, 2016:1-6. [12] GUO H F, TANG R M, YE Y M, et al.DeepFM:a factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2017:536-548. [13] HE X N, CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2017:355-364. [14] LIAN J X, ZHOU X H, ZHANG F Z, et al.xDeepFM:combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:1754-1763. [15] SONG W P, SHI C C, XIAO Z P, et al.AutoInt:automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:1161-1170. [16] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2021-10-01].https://arxiv.org/abs/1706.03762. [17] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [18] LI Z K, CUI Z Y, WU S, et al.Fi-GNN:modeling feature interactions via graph neural networks for CTR prediction[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:539-548. [19] WU Z H, PAN S R, CHEN F W, et al.A comprehensive survey on graph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1):4-24. [20] KIPF T N, WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].[2021-10-01].https://arxiv.org/abs/1609.02907. [21] 黄伟, 冯晶晶, 黄遥.基于多通道极深卷积神经网络的图像超分辨率算法[J].计算机工程, 2020, 46(9):242-247, 253. HUANG W, FENG J J, HUANG Y.Super-resolution algorithm for images based on multi-channel extremely deep convolutional neural network[J].Computer Engineering, 2020, 46(9):242-247, 253.(in Chinese) [22] VELICKOVIC P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2022-02-10].https://arxiv.org/abs/1710.10903. [23] RONG Y, HUANG W, XU T, et al.Dropedge:towards deep graph convolutional networks on node classification[EB/OL].[2021-02-10].https://arxiv.org/abs/1907.10903. [24] ZHANG M H, CHEN Y X.Link prediction based on graph neural networks[EB/OL].[2022-02-10].https://arxiv.org/abs/1802.09691. [25] MAAS A L.Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of ICML'13.Washington D.C., USA:IEEE Press, 2013:296-308. [26] RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323(6088):533-536. |