[1] KHAN S S, MADDEN M G.One-Class classification:taxonomy of study and review of techniques[J].The Knowledge Engineering Review, 2014, 29(3):345-374. [2] ROUSSEEUW P J, DRIESSEN K V.A fast algorithm for the minimum covariance determinant estimator[J].Technometrics, 1999, 41(3):212-223. [3] CHEN Y Q, ZHOU X S, HUANG T S.One-Class SVM for learning in image retrieval[C]//Proceedings of International Conference on Image.Washington D.C., USA:IEEE Press, 2001:34-37. [4] LIU F T, TING K M, ZHOU Z H.Isolation-based anomaly detection[EB/OL].[2022-03-03].https://dl.acm.org/doi/10.1145/2133360.2133363. [5] BREUNIG M M, KRIEGEL H P, NG R T, et al.Lof:identifying density-based local outliers[C]//Proceedings of the 3rd European Conference on Principles of Data Mining and Knowledge Discovery.Berlin, Germany:Springer, 1999:262-270. [6] CANDÈS E J, LI X, MA Y, et al.Robust principal component analysis?[EB/OL].[2022-03-03].https://www.zhangqiaokeyan.com/open-access_resources_thesis/0100057689306.html. [7] LI P, HASTIE T J, CHURCH K W.Very sparse random projections[C]//Proceedings of the 12th International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2006:287-296. [8] BENGIO Y, COURVILLE A, VINCENT P.Representation learning:a review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. [9] IONESCU R T, SMEUREANU S, ALEXE B, et al.Unmasking the abnormal events in video[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2914-2922. [10] ANDREWS J, TANAY T, MORTON E J, et al.Transfer representation-learning for anomaly detection[EB/OL].[2022-03-03].https://www.researchgate.net/publication/317424976_Transfer_Representation-Learning_for_Anomaly_Detection. [11] HAWKINS S, HE H, WILLIAMS G J, et al.Outlier detection using replicator neural networks[EB/OL].[2022-03-03].https://link.springer.com/chapter/10.1007/3-540-46145-0_17. [12] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al.Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Processing of the 25th International Conference on Medical Imaging.Berlin, Germany:Springer, 2017:146-157. [13] SABOKROU M, KHALOOEI M, FATHY M, et al.Adversarially learned one-class classifier for novelty detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.New York, USA:ACM Press, 2018:3379-3388. [14] PANG G S, YAN C, SHEN C H, et al.Self-trained deep ordinal regression for end-to-end video anomaly detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12170-12179. [15] CHEN T, TANG L, SUN Y, et al.Entity embedding-based anomaly detection for heterogeneous categorical events[EB/OL].[2022-03-03].https://arxiv.org/abs/1608.07502. [16] GUTMANN M, HYVÄRINEN A.Noise-contrastive estimation:a new estimation principle for unnormalized statistical models[EB/OL].[2022-03-03].http://proceedings.mlr.press/v9/gutmann10a.html. [17] ZHAI S, CHENG Y, LU W, et al.Deep structured energy based models for anomaly detection[C]//Proceedings of the 33rd International Conference on Machine Learning.New York, USA:ACM Press, 2016:1100-1109. [18] VINCENT P, LAROCHELLE H, LAJOIE I, et al.Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research 2010, 11:3371-3408. [19] BAHDANAU D, CHO K, BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2022-03-03].https://arxiv.org/abs/1409.0473. [20] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[EB/OL].[2022-03-03].https://www.mendeley.com/catalogue/d2be456a-aed9-3e9a-9ea4-388e020a82d9/. [21] HULL J J.A database for handwritten text recognition research[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5):550-554. [22] XIAO H, RASUL K, VOLLGRAF R.Fashion-MNIST:a novel image dataset for benchmarking machine learning algorithms[EB/OL].[2022-03-03].https://arxiv.org/abs/1708.07747. [23] KRIZHEVSKY A, HINTON G.Learning multiple layers of features from tiny image[EB/OL].[2022-03-03].https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf. [24] SALEHI M, ARYA A, PAJOUM B, et al.ARAE:adversarially robust training of autoencoders improves novelty detection[J].Neural Networks, 2021, 144:726-736. [25] RUFF L, GÖRNITZ N, DEECKE L, et al.Deep one-class classification[EB/OL].[2022-03-03].http://proceedings.mlr.press/v80/ruff18a.html. [26] GOLAN I, EL-YANIV R.Deep anomaly detection using geometric transformations[EB/OL].[2022-03-03].https://arxiv.org/abs/1805.10917. [27] LI X, KIRINGA I, YEAP T H, et al.Exploring deep anomaly detection methods based on capsule net[C]//Proccedings of the 33rd Canadian Conference on Artificial Intelligence.Berlin, Germany:Springer, 2020:375-387. [28] PERERA P, NALLAPATI R, XIANG B.OCGAN:one-class novelty detection using GANs with constrained latent representations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2893-2901. [29] ABATI D, PORRELLO A, CALDERARA S, et al.Latent space autoregression for novelty detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:481-490. [30] VENKATARAMANAN S, PENG K C, SINGH R V, et al.Attention guided anomaly localization in images[EB/OL].[2022-03-03].https://link.springer.com/chapter/10.1007/978-3-030-58520-4_29. [31] BERGMANN P, FAUSER M, SATTLEGGER D, et al.Uninformed students:student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:4182-4191. [32] SALEHI M, SADJADI N, BASELIZADEH S, et al.Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:14897-14907. [33] ZONG B, SONG Q, MIN M R, et al.Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[EB/OL].[2022-03-03].https://openreview.net/forum?id=BJJLHbb0. [34] GOYAL S, RAGHUNATHAN A, JAIN M, et al.DROCC:deep robust one-class classification[EB/OL].[2022-03-03].http://proceedings.mlr.press/v119/goyal20c.html. [35] SALEHI M, EFTEKHAR A, SADJADI N, et al.Puzzle-AE:novelty detection in images through solving puzzles[EB/OL].[2022-03-03].https://arxiv.org/abs/2008.12959. [36] CHAN W, JAITLY N, LE Q, et al.Listen, attend and spell:a neural network for large vocabulary conversational speech recognition[C]//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal.Washington D.C., USA:IEEE Press, 2016:4960-4964. |