1 |
BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of 2008 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2008: 1247-1250.
|
2 |
SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM Press, 2007: 697-706.
|
3 |
MILLER G A. WordNet. Communications of the ACM, 1995, 38 (11): 39- 41.
doi: 10.1145/219717.219748
|
4 |
VRANDEČIĆ D, KRÖTZSCH M. Wikidata. Communications of the ACM, 2014, 57 (10): 78- 85.
doi: 10.1145/2629489
|
5 |
MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning. Communications of the ACM, 2018, 61 (5): 103- 115.
doi: 10.1145/3191513
|
6 |
DAIBER J, JAKOB M, HOKAMP C, et al. Improving efficiency and accuracy in multilingual entity extraction[C]//Proceedings of the 9th International Conference on Semantic Systems. New York, USA: ACM Press, 2013: 121-124.
|
7 |
BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on Freebase from question-answer pairs[C]//Proceedings of 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2013: 1533-1544.
|
8 |
HAO Y C, ZHANG Y Z, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2017: 221-231.
|
9 |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 353-362.
|
10 |
WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (12): 2724- 2743.
doi: 10.1109/TKDE.2017.2754499
|
11 |
JAMBOR D, TERU K, PINEAU J, et al. Exploring the limits of few-shot link prediction in knowledge graphs[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2021: 2816-2822.
|
12 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2013: 2787-2795.
|
13 |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1112-1119.
|
14 |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2181-2187.
|
15 |
YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2022-08-11]. https://arxiv.org/abs/1412.6575.
|
16 |
TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 2071-2080.
|
17 |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 1811-1818.
|
18 |
NGUYEN D Q, NGUYEN T D. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: ACL Press, 2018: 327-333.
|
19 |
NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: ACL Press, 2019: 2180-2189.
|
20 |
李鑫柏, 吴鑫然, 岳昆. 基于贝叶斯网的开放世界知识图谱补全. 计算机工程, 2021, 47 (6): 104- 114.
URL
|
|
LI X B, WU X R, YUE K. Open-world knowledge graph completion based on Bayesian network. Computer Engineering, 2021, 47 (6): 104- 114.
URL
|
21 |
陈恒, 王思懿, 李冠宇, 等. 基于四元数胶囊网络的知识图谱补全模型. 计算机工程, 2022, 48 (2): 40-46, 64.
URL
|
|
CHEN H, WANG S Y, LI G Y, et al. Knowledge graph completion model based on quaternion capsule network. Computer Engineering, 2022, 48 (2): 40-46, 64.
URL
|
22 |
CHEN H, WANG W M, LI G Y, et al. A quaternion-embedded capsule network model for knowledge graph completion. IEEE Access, 2020, 8, 100890- 100904.
doi: 10.1109/ACCESS.2020.2997177
|
23 |
XIONG W, YU M, CHANG S, et al. One-shot relational learning for knowledge graphs[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2018: 1980-1990.
|
24 |
ZHANG C, YAO H, HUANG C, et al. Few-shot knowledge graph completion[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3041-3048.
|
25 |
CHEN M, ZHANG W, ZHANG W, et al. Meta relational learning for few-shot link prediction in knowledge graphs[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2019: 4216-4225.
|
26 |
SHENG J, GUO S, CHEN Z, et al. Adaptive attentional network for few-shot knowledge graph completion[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2020: 1681-1691.
|
27 |
NIU G, LI Y, TANG C, et al. Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 213-222.
|
28 |
SUN G, ZHANG C, WOODLAND P C. Transformer language models with LSTM-based cross-utterance information representation[C]//Proceedings of 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2021: 7363-7367.
|
29 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 5998-6008.
|
30 |
|